Cykl życiowy paproci w warunkach eksperymentalnych

Elżbieta ZENKTELER

ZENKTELER E. 2006. Life cycle of ferns in an experimental conditions. *Wiadomości Botaniczne* **50**(1/2): 5–20.

This paper presents a review of modifications of life cycle of ferns analysed *in vitro* and *in vivo* conditions. On the frame of literature data concerning alternation of generations based on the meiosis and syngamy cycles with the occurrence of apogamy or apospory were characterized. Additionaly, several new facts important for experimental induction of life cycle shortening during organogenesis from fern rhizome explants were described.

KEY WORDS: apospory, apogamy, diplospory, meiotic diplospory, life cycle shortening

Elżbieta Zenkteler, Zakład Botaniki Ogólnej, Instytut Biologii Eksperymentalnej, Uniwersytet im. A. Mickiewicza, 61-614 Poznań, ul. Umultowska 89

WSTĘP

Cykl życiowy u paproci jednako- i różnozarodnikowych składa się z dwu następujących po sobie, niezależnych, autotroficznych pokoleń; haploidalnego i diploidalnego (Sheffield, Bell 1987). Typowa dla tego cyklu heteromorficzna przemiana pokoleń sprzężona jest z regularnym haploidalno- diploidalnym następstwem faz jądrowych, oraz z rozdzieleniem w czasie i przestrzeni procesów syngamii i mejozy. Produkty syngamii (zarodek) i mejozy (zarodniki) pozostają w izolacji symplastycznej odpowiednio od tkanek gametofitu lub sporofitu (Bell 1992).

W haploidalnej fazie cyklu życiowego, po podziałach mitotycznych w obrębie gametangiów tworzą się: wyłącznie gamety męskie lub żeńskie (jednopłciowość przedrośla), lub też obydwa rodzaje gamet (obupłciowość przedrośla). Wysoka liczebność gamet zapewnia pokoleniu haploidalnemu skuteczne zapłodnienie. Syngamia dokonuje się wówczas poprzez a) samozapłodnienie w obrębie pojedynczego gametofitu; b) zapłodnienie między dwoma gametofitami pochodzacymi z zarodników tego samego sporofitu (wsobność) oraz c) zapłodnienie krzyżowe między gametofitami różnych sporofitów tego samego gatunku (Soltis, Soltis 1992), różnych gatunków (Whittier, Thomas 1993), a nawet rodzajów (Wagner et al. 1992). Po zapłodnieniu i rozwinięciu się zarodka w juwenilny sporofit przedrośle ginie. Epizodyczny charakter gametofitu, zarówno w małym jak i wielkim cyklu życiowym paproci, stanowi przejaw postępującej redukcji fazy haploidalnej w ramach tendencji ewolucyjnej, charakterystycznej dla roślin lądowych.

Diploidalna faza sporofitu jako rośliny naczyniowej o wyspecjalizowanych, wieloletnich organach, dominuje rozmiarami i długością życia nad gametofitem. Duża powierzchnia liści sprzyja maksymalnej produkcji diaspor. Ostatnie stadium diploidalnej fazy sporofitu stanowi 16 komórek macierzystych zarodników, z których po mejozie powstają w każdej zarodni 64 haploidalne spory.

Cykl życiowy paproci o typowej przemianie pokoleń charakteryzują następujące parametry: stosunek czasu trwania fazy haploidalnej do diploidalnej; korelacja przemiany faz jądrowych z fenotypową przemianą pokoleń; rozdzielenie w czasie i przestrzeni mejozy i syngamii; mitotyczne wytwarzanie gamet oraz występowanie lub brak połączenia symplastycznego między elementami obydwu faz (Bell 1992). Obecność wymienionych cech gwarantuje prawidłowy przebieg cyklu życiowego *in vivo,* w warunkach stabilnego środowiska.

WYSPECJALIZOWANY CYKL ŻYCIOWY PAPROCI

Kluczem do oceny zakresu zmienności cyklu życiowego paproci w warunkach eksperymentalnych jest dobre poznanie typowego cyklu wraz z jego rozlicznymi modyfikacjami *in vivo*. Nie jest to łatwe zadanie, bowiem paprocie ewoluowały w kierunku złożonych cykli życiowych, w następstwie skomplikowanych i długotrwałych procesów, m.in. poliploidyzacji oraz mieszańcowości, ułatwiających tym roślinom osiągnięcie wysokiego poziomu adaptacji ekologicznej.

Istotę wyspecjalizowanego cyklu życiowego paproci jednakozarodnikowych stanowi taka przemiana pokoleń, w której zachowany zostaje jedynie aspekt morfologiczny pokolenia. Jednym z atrybutów tego cyklu jest stopniowe eliminowanie mejozy w sporogenezie, aż do zastąpienia jej mitozą, a drugim pominięcie rozmnażania płciowego (syngamii), przy nadal utrzymującej się heteromorficznej przemianie pokoleń (Ryc. 1). Dlatego też, analizując różnice między cyklem typowym a wyspecjalizowanym, ukształtowanym w ramach określonych strategii reprodukcyjnych paproci, należy zwrócić uwagę na przebieg sporogenezy oraz reprodukcji płciowej. Cykle wyspecjalizowane ulegają teleskopowemu skróceniu, zwłaszcza gdy pomijają mejozę i fazę rozmnażania płciowego (Robert et al. 1994). Te niepełne cykle są wyrazem ewolucyjnego przystosowania paproci do zmieniających się czynników środowiska, m.in. do wahań w natężeniu światła i zmian fotoperiodu. Zwłaszcza słabe natężenie światła w warunkach krótkiego dnia sprzyja nasilaniu się zaburzeń w przebiegu gametogenezy, co ogranicza zdolność paproci do rozmnażania płciowego (Evans 1964).

Kontrolowana genetycznie przemiana pokoleń bez zmiany faz jądrowych zależy od stopnia zrównoważenia chromosomów, obecnych w poliploidalnych genomach. Wysoka poliploidalność niektórych gatunków paproci sprzyja

Ryc. 1. Strategie apomitycznego cyklu wyspecjalizowanego u paproci.

Fig. 1. Apomictic strategies of specialized life cycle of ferns.

ekspresji apogamicznego sporofitu. Zazwyczaj potwierdza to pozytywną korelację między poliploidalnością a apogamią (Kshirsagar, Mehta 1978, Soltis, Soltis 1992, Whittier 1962). Stan zbalansowania genetycznego determinuje rozwój pokolenia gametofitów albo sporofitów (Robert et al. 1994), natomiast zaburzenia w przebiegu mejozy, będące konsekwencją niezrównoważenia genomu hybrydów lub poliploidów, hamują przebieg procesów płciowych, prowadząc do apogamii (Cove, Knight 1993).

U paproci rozwijających się w środowisku, w którym dostępność czynników troficznych podlega znacznym wahaniom, pojawiają się cykle wyspecjalizowane, przebiegające z wyłączeniem syngamii lub mejozy. Warunkiem przeżywalności organizmu staje się wówczas zachowanie zmienności uzyskanej poprzez poliploidyzację i hybrydyzację dzięki wyłączeniu mejozy z cyklu życiowego.

Przebieg cyklu wyspecjalizowanego (apogamicznego lub aposporycznego) obserwowano u paproci *in vivo*, jak i w warunkach eksperymentalnych. Te ostatnie wykorzystano do zbadania wpływu cukrowców oraz regulatorów wzrostu na kierunek w jakim przebiegają modyfikacje, polegające na wydłużeniu lub skróceniu cyklu o kilka faz (Zenkteler 1997b, 2000a).

W kulturach tkankowych paproci źródłem wegla dla procesów biosyntezy są sacharoza lub glukoza (Hirsch 1975, Kato 1973, Kwa et al. 1991, Materi, Cumming 1990, Whittier 1964, Zenkteler 1997b). Rzadziej rozwój sporofitów lub gametofitów stymulowano cukrowcami takimi jak fruktoza (Kwa et al. 1991, Whittier 1964), maltoza (Whittier 1964), ryboza (Whittier 1964), dekstroza (Kwa et al. 1991), sorbitol (Hirsch 1975, Kwa et al. 1991) czy mannitol (Hirsch 1975, Kwa et al. 1991, Materi, Cumming 1990). Ponieważ cukrowce te wpływaja na potencjał osmotyczny pożywki, wykorzystano je jako czynnik stymulujący rozwój sporofitów lub gametofitów in vitro (Hirsch 1975). Testowanie działania czynnika osmotycznego, np. przez podstawienie mannitolu lub sorbitolu jako ekwiwalentów sacharozy, nie wpływało pozytywnie na przebieg procesów morfogenetycznych, co wskazuje na decydujące znaczenie czynnika troficznego w procesie przejścia od sporofitu do gametofitu (Hirsch 1975, Jain et al. 1997, Whittier 1964).

PRZEGLĄD WYSPECJALIZOWANYCH CYKLÓW ŻYCIOWYCH U PAPROCI JEDNAKOZARODNIKOWYCH

Prace dotyczące rozmaitych aspektów specjalizacji cyklu życiowego paproci (Asker, Jerling 1992, Batygina 1989, Bell 1979, 1981, 1992, Czapik 1996, Delevoryas 1966, Rejment-Grochowska 1977, Resende 1967, Wagner et al. 1992, Whittier 1962, Willemse 1984, Zenkteler 1997b) są równie liczne jak prace szczegółowo analizujące zaburzenia w przemianie pokoleń (Bell 1981, Bir, Anand 1982, Lin et al. 1992, Tilquin 1981, Walker 1985, Whittier 1964, 1976, 1978, Whittier, Thomas 1993, Willemse 1984, Zenkteler 1993, 1997a).

Apogamiczne przejście od gametofitu do sporofitu bez fuzji gamet jest charakterystyczne między innymi dla poliploidalnych (4×, 6×, 8×, 10×) gatunków zbiorczych, liczacych nawet do 140 cytotypów, spotykanych w rodzinach Aspleniaceae (Asplenium aethiopicum, A. flabellifolium, A. macilentum), Polypodiaceae (Polypodium dispersum, Diplazium hians) oraz u Dryopteridaceae (Dryopteris borreri, D. remota) (Tab. 1). Część wymienionych gatunków to autopoliploidy o utrwalonym aseksualnym sposobie rozmnażania, reszta to sterylne hybrydy lub mieszańce o nieregularnym łączeniu się par chromosomów podczas mejozy. Ich gametofity pozbawione są funkcjonalnych archegoniów, przy zachowaniu funkcjonalnych anteridiów. Spermatozoidy hybrydów mogą włączać się w rozmnażanie form o zachowanym cyklu płciowym. Mieszańce między apogamicznymi i płciowo rozmnażającymi się gatunkami paproci dziedzicza apogamiczny sposób reprodukcji po formie ojcowskiej. Apogamia jest więc cechą dominującą, sprzyjającą rozszerzaniu się tego modelu reprodukcji w "dotkniętej" nią populacji (Walker 1985).

Ciekawostką jest kondycjonowanie spor

Tabela 1. Występowanie obligatoryjnej apogamii w obrębie gametofitów 64 gatunków paproci (wg Raghavana 1989, zmienione i uzupełnione).

Table 1.	Obligatory apogamy	on gametophytes of	f 64 species of fe	rns (according to l	Raghavan 1989,	modified and	supple-
mented).							

Rodzina	Rodzaj i gatunek	Źródło
Adiantaceae	Adiantum lunulatum	Mehra 1938a
Aspleniaceae	Asplenium aethiopicum	Braithwaite 1964
Blechnaceae	Doodia caudate	Heim 1896
Dryopteridaceae	Athyrium filix-femina	Farmer, Digby 1907
	Athyrium hachijoense, A. oku boanum	Kanamori 1972
	Ctenitis falciculata	Steil 1915a
	Cyrtomium falcatum	De Bary 1878, Allen 1914, Steil 1918, Whittier 1964a
	Cyrtomium fortunei	Steil 1918, Kanamori 1972
	Dryopteris affinis	Farmer, Digby 1907, Dopp 1939, Duncan 1943, Bell 1959
	Dryopteris atrata	Steil 1915b, 1919a, Duncan 1943, Kanamori 1972
	Dryopteris chinensis	Kanamori 1972, Kurita 1981
	Dryopteris filix-mas	De Bary 1878, Heilbronn 1910
	Dryopteris fuscipes, D. hondoensis	Kanamori 1972
	Dryopteris remota	Fischer 1919, Dopp 1932
	Dryopteris wallichiana	Loyal 1960
	Polystichum aculeatum	Heilbronn 1910
	Polystichum auriculatum	Steil 1918
	Polystichum tsus-simense	Steil 1915a, Patterson 1942, Kanamori 1972
	Tectaria trifoliate	Steil 1944
Grammitidaceae	Xiphopteris serrulata	Stokey, Atkinson 1958
Hymenophyllaceae	Crepidomanes latemarginale	Yoroi 1976
	Trichomanes alatum	Bower 1888
	Trichomanes auriculatum	Stokey 1948
	Trichomanes kraussii	Woronin 1908
	Trichomanes pinnatum	Bierhorst 1975b
	Trichomanes trigonum	Georgevitch 1910
Pteridaceae	Actiniopteris australis	Stokey 1948a
	Bommeria pedata	Gastony, Haufler 1976
	Ceratopteris hybr.	Hickok 1979
	Cheilanthes alabamensis, Ch. castanea	Whittier 1965
	Cheilanthes feei	Steil 1933
	Cheilanthes eckloniana	Woronin 1908
	Cheilanthes viridis	Steil 1918, Najar, Bajpai 1964
	Notholaena flavens	Woronin 1908
	Notholaena incana	Nayar, Bajpai 1964
	Notholaena marantae, N. nivea, N. sinuate	Woronin 1908
	Pellaea atropurpurea	Steil 1911, Hayes 1924, Najar, Bajpai 1964
	Pellaea cordifolia	Steil 1933
	Pellaea glabella	Pickett, Manuel 1925, Whittier 1968
	Pellaea ovata	Steil 1951, Nayar, Bajpai 1964
	Pellaea striata	Steil 1918
	Pellaea viridis	Steil 1915

Rodzina	Rodzaj i gatunek	Źródło		
	Polystichum setiferum	Zenkteler 1993		
	Pityrogramma calomelanos	Woronin 1908		
	Pteris argyraea	Steil 1918		
	Pteris biaurita	Mehra 1938		
	Pteris cretica	Farlow 1874, De Bary 1878, Steil 1918, Kanamori 1972		
	Pteris fauriei, P. kiuschiuensis, P. natiensis, P. nipponica, P. oshimensis, P. setulosocostulata	Kanamori 1972		
Osmundaceae	Osmunda cinnamomea	Wuist 1917		
	Osmunda claytoniana, O. javanica	Sarbadhikari 1939		
Polypodiaceae	Phlebodium aureum	Ward 1963		
	Polypodium dispersum	Evans 1964		
Schizaeaceae	Anemia tomentosa	Atkinson 1962		
Thelypteridaceae	Thelypteris phegopteris	Wuist 1917		

Tabela 1. Kontynuacja. - Table 1. Continued.

(formowanie większych niż przeciętne zarodników), które w cytoplazmie zawierają struktury o charakterze białkowym, stwierdzone u apogamicznej formy *Dryopteris remota* (Bell 1981). Budowy tych struktur jak dotąd nie poznano. Uważa się, że ich obecność sprzyja aktywowaniu genów kierujących ontogenezę komórek gametofitu ku rozwojowi apogamicznego sporofitu. U osobników *D. remota* o zachowanym rozmnażaniu płciowym takich ciał białkowych nie stwierdzono (Bell 1981).

W przebiegu diplosporii mejotycznej określanej jako tzw. system Döpp-Mantona (Manton 1950) komórka archesporialna podlega 3 podziałom mitotycznym, po których następuje czwarta, zmodyfikowana mitoza i powstają jądra restytucyjne, podlegające mejozie. Daje to 32 diplospory w tetradach (Ryc. 2). Diplosporia wiąże się z zaburzeniami w redukcji chromosomów podczas sporogenezy, a rozwijające się w zarodni 32 zarodniki są większe niż zarodniki haploidalne tego samego gatunku. System ten charakteryzuje się regularnym powtarzaniem sekwencji podziałowych w przebiegu sporogenezy oraz obecnością plemni z funkcjonalnymi, diploidalnymi spermatozoidami w pokoleniu gametofitów (Tilquin 1981, Walker 1985). Tworzenie diploidalnych zarodników predestynuje gatunki o tym typie zaburzeń do apogamii.

Szczególną odmianą diplosporii mejotycznej jest zespół przemian tzw. systemu Braithwaite'a (Braithwaite 1964), w którym komórka archesporialna dzieli się mitotycznie cztery razy i w rezultacie powstaje 16 komórek macierzystych zarodników. Następnie zachodzi zmodyfikowany pierwszy podział mejotyczny, podczas którego chromosomy nie ulegają rozdziałowi i tworza sie jadra restytucyjne. Drugi podział mejotyczny jest już prawidłowy i powstają 32 diplospory w diadach (Ryc. 2). W opisanej tu funkcjonalnej diplosporii nie występuje genetyczna supresja, uniemożliwiająca łączenie się chromosomów w pary, co bywa najczęściej przyczyną braku ich homologiczności. Niewiele gatunków paproci odznacza sie tak zmiennym systemem rozmnażania oraz brakiem stałości w przebiegu sekwencji podziałowych kierujących sporogenezą (Tilquin 1981, Walker 1985). Inną, ważną cechą wyróżniającą system funkcjonalnej diplosporii u zaliczanych tu gatunków jest nieobecność plemni i spermatozoidów w pokoleniu gametofitów.

W warunkach *in vitro* apogamię może inicjować pojedyncza komórka (Kuriyama et al. 1990) lub grupa komórek gametofitu, przekształcających się w apogamiczne inicjały pod wpływem niedostatku wody lub wzrastającej koncentracji metabolitów w wysychających kulturach. Ana-

Ryc. 2. Sporogeneza i jej modyfikacje u apomiktycznych gatunków paproci. Fig. 2. Modifications of sporogenesis in apomictic fern species.

lizując w mikroskopie elektronowym przebieg różnicowania się komórki inicjalnej apogamicznego sporofitu, stwierdzono stosunkowo płynne przejście od stanu parenchymatycznego do merystematycznego, przejawiające się stopniowym wzrostem liczby rybosomów w komórkach merystematycznych. Apogamiczne, haploidalne sporofity uzyskano w kulturach gametofitów *Botrychium dissectum* po 11 miesiącach hodowli (Whittier 1976). Czas niezbędny do zaindukowania apogamii zależał od nagromadzenia się w naczyniach hodowlanych odpowiedniej ilości etylenu, który stymuluje apogamię w kulturach tkankowych (Whittier 1976).

Kolejnym czynnikiem pobudzającym gametofity do somatycznej restytucji sporofitów było stężenie cukrowców w pożywce. Podwyższony poziom sacharozy w pożywce (ponad 20g/l)

Ryc. 3. Wyspecjalizowane cykle życiowe u paproci. Fig. 3. Specialized life cycle of ferns.

sprzyjał aposporii, dostarczając energii niezbędnej przy ekspresji genów regulujących przejście od gametofitu do sporofitu (Whittier 1962).

Aposporia *in vivo* (przejście od sporofitu do gametofitu) występuje stosunkowo rzadko (Tab. 2). W wąskim znaczeniu, za przejaw aposporii uznano nawet tworzenie pojedynczych komórek gametofitu (np. protonemy lub ryzoidu) na sporoficie, który utracił zdolność do sporogenezy (Steil 1951).

Zjawisko aposporii *in vitro* indukowano np. na juwenilnych liściach *Pteridium aquilinum*, na których już po trzech dniach indukcji zaczynały tworzyć się gametofity (Sheffield 1985). Na haploidalnych liściach *Botrychium dissectum* po 6 miesiącach kultur *in vitro* obserwowano liczne gametofity wytwarzające archegonia i anteridia (Whittier 1978). Dostrzeżono również, że cykl aposporyczny może być indukowany eksperymentalnie np. przez głodzenie eksplantatów.

Charakterystykę graficzną systemu reprodukcji paproci, oddającą złożoność ich wzajemnych relacji, przedstawiono na schemacie (Ryc. 3).

CYKL ŻYCIOWY PAPROCI W WARUNKACH EKSPERYMENTALNYCH

W kulturach tkankowych obserwuje się mniej lub bardziej zaawansowane rozchwianie cyklu życiowego paproci, spowodowane wyłączeniem eksplantatów spod korelującego wpływu całego organizmu, a także stres, wywołany nadmiarem lub niedoborem sacharozy oraz regulatorów wzrostu, stopniem uwodnienia pożywki, a także indukującym działaniem natężenia światła lub długotrwałego zaciemniania. Możliwość indukowania modyfikacji w cyklu życiowym paproci pozwala na badanie uwarunkowań regulujących periodyczną ekspresję fazy gametofitu lub sporofitu. Czynnikiem troficznym decydującym o liczbie faz w przebiegu cyklu paproci okazały się cukrowce (zazwyczaj w kombinacji z kinetyną) (Zenkteler 1997b, 2000a).

Skrócenie cyklu typu "sporofit → sporofit". Podczas organogenezy bezpośredniej u paproci Pteridium aquilinum, Thelypteris palustris i Phyllitis scolopendrium ekspresje genomu sporofitu do regeneracji sporofitu przybyszowego o fenotypie identycznym jak własny, stymulowały wysokie dawki sacharozy (1-2%) lub glukozy (2-4%) oraz kinetyny w pożywce MFMM (Tab. 3). Najbardziej znaczne skrócenie cyklu wymagało najwyższych dostaw sacharozy, ponieważ zachodziło z pominięciem aż czterech faz, w tym dwu najbardziej czaso- i energochłonnych, czyli mejozy i syngamii (Ryc. 4). Analiza produktu organogenezy bezpośredniej u Pteridium aquilinum, Thelypteris palustris oraz Phyllitis scolopendrium, przeprowadzona w mikroskopie świetlnym, wykazała odrębność w budowie pąków przybyszowych w porównaniu z pakami wierzchołkowymi osi głównej lub osi bocznych kłącza. Zawiązki pąków przybyszowych, które rozwijały się z eksplantatu sporofitowego, były kuliste, a ich powierzchnie okrywała pojedyncza warstwa pryzmatycznych komórek powierzchniowych. We wczesnym stadium rozwoju pąka jego komórka apikalna nie różniła się wielkością od komórek pryzmatycznych. Wnętrze pąka wypełniały drobne, aktywne mitotycznie komórki merystematyczne, wśród których nie zakładały się pasma komórek prokambialnych. Podczas dalszego rozwoju paków przybyszowych dzielące się komórki powierzchniowe tworzyły sektory komórek pochodnych, o granicach wyznaczonych przez antyklinalne lub peryklinalne podziały komórkowe. Taka budowa zdecydowanie różniła struktury przybyszowe od paków wierzchołkowych kłacza o prominentnej, pojedynczej komórce apikalnej i wcześnie różnicujących się komórkach prokambialnych. W trakcie dalszego wzrostu pąków przybyszowych wymienione zaburzenia (brak komórki apikalnej i prokambium) podlegały reparacji. W warstwie powierzchniowej pąków przybyszowych wyróżnicowywało się zwykle kilka komórek apikalnych, które sterując przebiegiem podziałów swoich pochodnych, kontrolowały rozwój licznych zawiązków pędów rozrastających się w krzaczaste wieloroślinki. Formowanie się sporofitów w warunkach organogenezy bezpośredniej przebiegało w dwóch fazach. W fazie inicjacji (wzrost częstotliwości Tabela 2. Aposporyczny rozwój gametofitów na liściach sporofitów 61 gatunków paproci (wg Raghavana 1989, zmienione i uzupełnione).

Table 2. Aposporic development of	gametophytes on the	e leaves of sporop	hytes of 61 specie	s of ferns (according to	o Raghavan
1989, modified and supplemented)).				

Rodzina	Rodzaj i gatunek	Źródło
Adiantaceae	Adiantum fulvum	Beyerle 1932
	Adiantum pedatum	Morel 1963
Aspleniaceae	Asplenium ebenoides	Morlang 1967
	Asplenium nidus, A. serratum	Beyerle 1932
	Asplenium platyneuron	Lawton 1932
	Asplenium ruta-muraria	Meyer 1953
	Camptosorus rhizophyllus	Beyerle 1932
	Phyllitis scolopendrium	Farmer, Digby 1907, Kohler 1920, Lawton 1932, Zenkteler 1993
Blechnaceae	Doodia caudate	Duncan 1941
	Blechnum capensis	Beyerle 1932
	Woodwardia virginica	Lawton 1932
Cyatheaceae	Alsophila tomentosa	Beyerle 1932
	Dicksonia fibrosa	Beyerle 1932
Davalliaceae	Davallia canariensis	Beyerle 1932
	Nephrolepis biserrata	Beyerle 1932
	Nephrolepis cordifolia	Sulkyan, Mehra 1977
Dennstaedtiaceae	Dennstaedtia punctilobula	Lawton 1932
	Pteridium aquilinum	Farlow 1889, Steil 1949, Bell, Richards 1958, Takahashi 1962, Sheffield, Bell 1981a
Dicksoniaceae	Cibotium schiedei	Beyerle 1932
Dryopteridaceae	Athyrium filix-femina	Stansfield 1899, Farmer, Digby 1907, Beyerle 1932, Lawton 1932
	Cystopteris fragilis	Lawton 1932
	Dryopteris affinis	Farmer, Digby 1907
	Dryopteris atrata	Steil 1919a
	Dryopteris erythrosora	Takahashi 1962
	Dryopteris marginalis	Lawton 1932
	Dryopteris wallichiana	Stansfield 1899
	Matteucia struthiopteris	von Anderkas 1986
	Polystichum acrostichoides	Lawton 1932
	Polystichum aculeatum	Stanfield 1899
	Polystichum capense	Beyerle 1932
	Tectaria maingayi	Beyerle 1932
	Woodsia obtusa	Lawton 1932
Hymenophyllaceae	Trichomanes kraussii	Woronin 1908
	Trichomanes trigonum	Georgevitch 1910
Osmundaceae	Osmunda cinnamomea	Partanen 1965
	Osmunda regalis	Manton 1932, Lawton 1932
Pteridaceae	Anogramma chaerophylla, A. leptophylla	Beyerle 1932
	Ceratopteris pteridioides	Loyal, Chopra 1977
	Ceratopteris thalictroides	Kohler 1920, Beyerle 1932, Gottlieb 1972
	Notholaena nivea	Goebel 1905, Woronin 1908
	Notholaena sinuata	Kohler 1920

Rodzina	Rodzaj i gatunek	Źródło
	Hemionitis palmata	Beyerle 1932
	Pityrogramma farinifera	Woronin 1908
	Pityrogramma calomelanos	Beyerle 1932
	Pteris cretica	Lawton 1932, Bristow 1962
	Pteris tremula	Beyerle 1932
	Pteris vittata	Takahashi 1969
Polypodiaceae	Drynaria heraclea, D. rigidula	Beyerle 1932
	Microgramma polypodioides	Bally 1909
	Microgramma vacciniifolia	Hirsch 1975
	Microsorium punctatum	Steil 1921
	Phlebodium aureum	Bally 1909, Beyerle 1932
	Platycerium bifurcatum	Kohler 1920
	Polypodium lycopodioides	Bally 1909
	Polypodium vulgare	Kohler 1920
Schizaeaceae	Lygodium japonicum	Takahashi 1969
Thelypteridaceae	Thelypteris phegopteris	Brown 1918
	Thelypteris palustris	Beyerle 1932, Bell, Richards 1958, Sheffield, Bell 1981a

Tabela 2. Kontynuacja. - Table 2. Continued.

mitoz, wyodrębnienie i polaryzacja centrów merystematycznych, formowanie się zawiązków pąka) obecność sacharozy i kinetyny była niezbędna, natomiast w dalszym wzroście sporofitów przybyszowych konieczne było wycofanie tych składników z pożywki.

Ekspresję informacji genetycznej decydującą o kierunku rozwoju eksplantatów in vitro reguluje szereg mechanizmów molekularnych, sterowanych m.in. przez cukrowce (Jain et al. 1997). Zwiększenie dostępności substratu oddechowego aktywowało geny szlaku anabolicznego, prowadząc do teleskopowego skrócenia cyklu czyli regeneracji typu "sporofit→sporofit", podczas której pak sporofitowy wytwarzał liczne pąki przybyszowe. Tak więc warunki "korzystne energetycznie" stymulowały regenerację sporofitów (wysoko uorganizowanych roślin o dużych wymaganiach pokarmowych), podczas gdy w warunkach deprywacji pokarmowej rozwijały się samowystarczalne gametofity, o prostej plesze. Innym przykładem modyfikacji cyklu w systemie "sporofit->sporofit" było odmłodzenie kłącza poprzez wytworzenie juwenilnego pąka sporofitowego. W rezultacie głodzenia kłącza następowała rewersja ontogenetyczna, wyrażająca się uproszczeniem w budowie morfologicznej i anatomicznej regenerującego pąka (Materi, Cumming 1990).

Skrócenie cyklu typu "sporofit→gametofit" i "gametofit->sporofit". Taki przebieg organogenezy bezpośredniej, podczas której eksplantatów sporofitowych regeneroz wały niezredukowane gametofity, występuje w obrębie juwenilnych blaszek liściowych np. u Phyllitis scolopendrium. Ten cykl przemian wymaga niewielkich dostaw kinetyny i wycofania sacharozy z pożywki, aby z eksplantatu sporofitowego regenerowały formy młodsze rozwojowo (gametofity), tolerujące niedobory pokarmowe (Ryc. 4). Aposporyczna modyfikacja cyklu (skrócenie o dwie fazy) zachodzi bez przemiany faz jądrowych. Zdolność do regeneracji aposporycznej w cyklu heteromorficznym ("sporofit→gametofit"), czyli do regeneracji gametofitu bezpośrednio z blaszki liściowej, obniża się wraz z wiekiem liścia, co obserwowano u P. scolopendrium.

Analiza anatomiczna eksplantatów liściowych *Phyllitis* wykazała pojedyncze lub skupiskowe zakładanie się aposporycznych inicjałów

Gatunek	Rodzaj stymulowanych eksplantatów	Wynik stymulacji	Rodzaj modyfikacji in vitro
Pteridium aquilinum	krótkopędy	pąki przybyszowe	sporofit →sporofit lub sporofit→kalus→gametofit
	zdekapitowane długopędy	brak regeneracji	sporofit→kalus→sporofit
Polypodium vulgare	fragment osi kłącza I rz.	pąki przybyszowe	sporofit->kalus->sporofit
	fragment osi kłącza II rz.	pąki boczne	sporofit->kalus->sporofit
Thelypteris palustris	fragment osi kłącza	pąki boczne	sporofit→sporofit sporofit→kalus→gametofit sporofit→kalus→sporofit
Dryopteris carthusiana	fragment osi kłącza	pąki przybyszowe pąki boczne	sporofit→kalus→sporofit
Dryopteris dilatata	fragment osi kłącza	pąki przybyszowe pąki boczne	sporofit→kalus→sporofit
Dryopteris filix-mas	nasady ogonków liściowych (fylopodia)	pąki przybyszowe	sporofit→kalus→sporofit
Matteucia struthiopteris	fragment kłącza rozłogowego	pąki boczne	sporofit→kalus→gametofit sporofit→kalus→sporofit
Phyllitis scolopendrium	blaszka juwen. liścia	gametofity	sporofit→gametofit
			struktury pośrednie
	nasady ogonków liściowych	pąki przybyszowe	sporofit→sporofit
	(fylopodia)		sporofit-kalus-sporofit

Tabela	3.	Modyfikacje	cyklu	życiowego	u	paproci	podczas	regeneracji in	ı vitro.
Table 3	. N	Iodifications o	f the lit	fe cycle of f	ern	s during	in vitro 1	regeneration.	

gametofitowych wśród komórek subepidermalnych, wyłącznie na górnej powierzchni blaszki. Z niezredukowanych gametofitów tworzyły się sporofity albo tzw. "struktury pośrednie" – liściokształtne, znacznie przekształcone morfologicznie, o dychotomicznie rozczłonowanej, niewielkiej "blaszce", osadzonej na krótkim, staśmionym "ogonku". Komórka apikalna na wierzchołku tych liści wcześnie zamierała. Układ przewodzący struktur pośrednich zbudowany był z cewek (tracheidów), o spiralnych lub drabinkowatych zgrubieniach ścian. W epider-

Ryc. 4. Teleskopowe skrócenie cyklu typu **"sporofit**—**sporofit**" i **"sporofit**—**gametofit**". Syng = Syngamia. Fig. 4. Telescopic shortening of life cycle i.e. **'sporophyte**—**sporophyte**' and **'sporophyte**—**gametophyte**'. Syng = Syngamy.

mie występowały nieliczne i słabo wykształcone aparaty szparkowe. Część gametofitów przekształconych w struktury liściokształtne wykazywała bifurkację plechy, niekiedy wielokrotną. Ten ostatni rodzaj przekształceń nawiązywał do struktur pośrednich tylko morfologicznie, gdyż nie występowały tu cewki, ani aparaty szparkowe. Występowanie struktur pośrednich między gametofitem a sporofitem obserwowano in vitro jedynie u P. scolopendrium, jednak struktury te wcześnie zaprzestawały wzrostu i nie rozwijały się dalej. W przebiegu organogenezy u Phyllitis scolopendrium stwierdzono występowanie gradientu morfogenetycznego wzdłuż osi liścia, który sterował morfogenezą sporofitów w obrębie ontogenetycznie starszego ogonka lub gametofitów w obrębie młodszej rozwojowo blaszki.

Skrócenie cyklu typu "sporofit→kalus→sporofit". Podczas organogenezy pośredniej następuje "podstawienie" fazy kalusa w miejsce jednej lub dwu faz cyklu rozwojowego. Sekwencje typu "sporofit→kalus→sporofit" oraz "sporofit→ kalus→gametofit" są najczęściej spotykanym przejawem modyfikacji cyklu w kulturach in vitro. W organogenezie pośredniej u Pteridium aquilinum, Polypodium vulgare, Thelypteris palustris, Phyllitis scolopendrium, Matteuccia struthiopteris, Dryopteris dilatata oraz D. carthusiana (Tab. 3), kalus i powstające z niego sporofity uzyskiwano z bardzo młodych paków przybyszowych lub bocznych izolowanych bezpośrednio z kłącza. Paki te stymulowano do proliferacji kalusa wysokimi stężeniami sacharozy (3–4%) i kinetyny 20 mg \cdot l⁻¹ w pożywce MFMM. Wycofanie cukrowca i cytokininy indukowało rozwój gametofitów w tkance kalusowej. W przebiegu regeneracji pośredniej u T. palustris (Ryc. 5) z paków inicjalnych proliferowały sferyczne, dość liczne agregaty kalusa. Intensywność proliferacji zwiększała się wraz ze wzrostem stężenia sacharozy. Przy poziomie 4-5% sacharozy rozwijały się liczne, duże, luźno powiązane ze sobą agregaty kalusa. Dawka 20 mg · l⁻¹ KIN oraz 4% sacharozy najintensywniej stymulowała ich proliferację. Po wycofaniu kinetyny z pożywki w peryferycznych obszarach agregatów kalusa, regenerowały pąki przybyszowe. Kuliste, kilkunastokomórkowe

Ryc. 5. Teleskopowe skrócenie cyklu typu **"sporofit→kalus→sporofit"** oraz **"sporofit→kalus→gametofit"**. Syng = Syngamia.

Fig. 5. Telescopic shortening of life cycle i.e. 'sporophyte \rightarrow kalus \rightarrow sporophyte' and 'sporophyte \rightarrow kalus \rightarrow gametophyte'. Syng = Syngamy

pąki rozwijały się na wąskiej, 1–2 komórkowej podstawie. Komórki miękiszowe kalusa wokół tej podstawy zawierały liczne amyloplasty z ziarnami skrobi. W centrum pąka znajdowały się aktywne podziałowo komórki merystematyczne.

Próby sterowania systemem morfogenezy sporofitowej lub gametofitowej poprzez różnicowanie wysokości dostaw cukrowców wskazują, że zarówno ilość, jak i rodzaj cukru użytego do stymulacji wywierają istotny wpływ na przebieg tego procesu. Pod wpływem stymulacji dwucukrami: sacharoza i maltoza (Materi, Cumming 1990), heksozami (glukozą i fruktozą) i pentozami (rybozą), gametofity akumulowały cukry rozpuszczalne lub skrobię asymilacyjną, gromadząc zasoby energii niezbędnej do apogamicznego przejścia od pokolenia gametofitu do sporofitu (Whittier 1978). Mannoza, laktoza, galaktoza i ksyloza okazały się nieprzydatne do tego celu (Whittier 1964). Disacharydy (sacharoza, maltoza), pentozy (ryboza) i heksozy (glukoza, fruktoza) stymulowały wzrost gametofitów w warunkach doświadczalnych, jednak przyspieszone starzenie się komórek przedrośli było efektem ubocznym stosowania zbyt wysokich dawek cukrowców.

Antagonistyczny efekt wysokiego natężenia światła i wysokiego poziomu cukrowców w pożywce silnie zaburzał procesy regeneracji w kulturach tkanek paproci (Whittier 1964). Podwyższenie dawki cytokininy zapobiegało degradacji chloroplastów (Hirsch 1975), stymulując ponadto podziały komórkowe oraz rozwój centrów merystematycznych i zawiązków pąków (Bell 1992). Dlatego najistotniejszym czynnikiem stabilizującym prawidłowy przebieg cyklu życiowego paproci *in vitr*o okazało się zrównoważenie stymulującego oddziaływania cukru, z hamującym wpływem wysokich wartości potencjału osmotycznego.

Skrócenie cyklu typu "sporofit→kalus→gametofit". Niedobór cukrowców w systemie regeneracji typu "sporofit→kalus→gametofit" włączał ekspresję genów fazy "młodszej rozwojowo" poprzez odróżnicowanie w tkance kalusowej komórek merystematycznych, rozwijających się w gametofity (Bell 1992). Kalus *T. palustris* uzyskany na pożywce z dodatkiem 10 mg·l⁻¹ KIN i 2% sacharozy, po przeniesieniu na pożywkę bez regulatorów wzrostu i sacharozy stopniowo zużywał nagromadzone wcześniej materiały zapasowe. Po 6 tygodniach hodowli komórki miękiszowe kalusa były już stosunkowo jednorodną tkanką, w której dopiero po 12 tygodniach wyróżnicowywały się sercowate gametofity, o dobrze wykształconym merystemie brzeżnym. Dalszy ich rozwój zachodził bez tworzenia gametangiów.

Przy organogenezie pośredniej faza kalusa "podstawiana" była w zamian za te fazy cyklu, o które uległ on skróceniu pod wpływem wysokich stężeń sacharozy i kinetyny. W kalusie tym tworzyły się sporofity (na pożywce o niskiej zawartości agaru i wysokiej kinetyny) lub gametofity (na pożywce o wysokiej zawartości agaru i bez sacharozy). U *Polypodium vulgare*, *Dryopteris dilatata* i *D. carthusiana* różnorodne metody stymulacji kalusa indukowały wyłącznie sporofity.

Wyniki te, wsparte o dane literaturowe, umożliwiły skonstruowanie zamieszczonego poniżej schematu modyfikacji cyklu życiowego w warunkach eksperymentalnych.

PODSUMOWANIE

Według teorii Blackmanna (Bell 1979), cykl życiowy paproci stanowi system periodycznych korelacji, w którym końcowe stadium jednej fazy, daje początek fazie następnej. Ta teoria dobrze charakteryzuje cykl przebiegający w niezaburzonych warunkach naturalnych. Teoria Langa (Bell 1979) ujmuje kompleks zależności składających się na przebieg typowego oraz zmodyfikowanego cyklu życiowego. Według Langa odrębność morfologiczna gametofitu i sporofitu jest konsekwencja znaczących różnic środowiskowych, w jakich podejmują rozwój inicjały obydwu faz rozwojowych. Dlatego w komórkach apikalnych zarodka, zasilanych energetycznie przez zespół otaczających je komórek gametofitu, włączane są geny fazy sporofitowej, natomiast niczym nie osłonięta komórka apikalna protonemy, narażona na utrate metabolitów poprzez ich dyfuzję do substratu, aktywuje geny fazy gametofitowej. Zakłada się więc, że aktywacja genów haplofazy wymaga niższych nakładów energetycznych niż aktywacja genów diplofazy. Opierając się na obserwacji cyklu życiowego paproci w warunkach eksperymentalnych dostrzegamy, że teoria Langa odnosząca się do warunków *in vivo* znajduje pełne uzasadnienie także *in vitro*. Potwierdza ją również fakt, że komórki kalusa otaczające inicjały pąków sporofitowych u *Thelypteris palustris* charakteryzowały się wyższą zawartością materiałów zapasowych niż komórki kalusa, z których regenerowały gametofity (Zenkteler 1997b, 2000a, b).

Możliwość indukowania modyfikacji w cyklu życiowym paproci o typowej przemianie pokoleń stanowi rzadką okazję do badania uwarunkowań regulujących periodyczną ekspresję prostej, pozbawionej tkanki waskularnej generacji haploidalnej lub złożonej, waskularnej generacji diploidalnej. W warunkach eksperymentalnych, u poliploidalnych gatunków paproci granica między fazą gametofitu a fazą sporofitu zaznacza się stosunkowo słabo. Uderzającą cechą jest w tym wypadku płynność z jaką jedno pokolenie może przechodzić w drugie (Bell 1981, Zenkteler 1997a, b, 2000a, b)].

Obydwie generacje mogą również wykazywać homologie, co sugeruje, że ich tkanki zachowują potencjał jednego bądź drugiego pokolenia, a ujawnienie się określonych cech morfologicznych zależy głównie od czynników fizycznych kultury. Wyrazem tego są pojawiające się *in vitro* "struktury pośrednie" – łączące w sobie cechy obydwu generacji (Bell 1981, Hirsch 1975, Zenkteler 1997a, 2000a).

Sporofit paproci zawiera zespół genów sterujących ekspresją haploidalnego gametofitu bądź diploidalnego sporofitu. Dominującą ilościowo częścią tego genomu jest zespół chromosomów sporofitowych, tworzących oddzielny kompartyment (Klekowski 1979). Wydaje się, że wspomniana kompartymentacja jest jednym z czynników ułatwiających przejście między fazami cyklu życiowego, co ma istotne znaczenie zwłaszcza przy wysokiej poliploidalności lub mieszańcowości paproci. Specjalizacja cyklów życiowych, ukierunkowana na adaptację do warunków bardzo korzystnych lub skrajnie niesprzyjających rozwojowi, zarówno in vivo jak in vitro jest kolejnym czynnikiem skracajacym przejście od gametofitu do sporofitu. W warunkach maksymalnej akumulacji suchej masy, wzrost koncentracji metabolitów w komórkach włącza geny kierujące cyklem u paproci poliploidalnych ku apogamii (rozwój sporofitów na gametoficie), natomiast w warunkach deprywacji pokarmowej, ku aposporii (rozwój gametofitów na sporoficie). Te wyselekcjonowane na drodze ewolucyjnej mechanizmy adaptacyjne (apogamia i aposporia) umożliwiają paprociom przetrwanie niekorzystnych amplitud czynników środowiskowych. W warunkach in vitro ta szczególna zdolność adaptacyjna wyraża się wysoką frekwencją apogamii, czyli rozwoju sporofitów bezpośrednio z tkanek eksplantatu gametofitowego (Whittier 1964, 1976, Kwa et al. 1991, Lin et al. 1995, Mehra 1983, Mehra, Palta 1971, Mehra, Sulklyan 1969), lub aposporii poprzez regeneracje gametofitów z eksplantatu sporofitowego (Hirsch 1975, Sheffield 1985, Sheffield, Bell 1981, 1987, Zenkteler 1997 a).

Podczas eksperymentalnie indukowanej apogamii wykazano znaczący wpływ: natężenia światła, natężenia światła i cukrowców, uwodnienia agaru, stężenia soli mineralnych oraz regulatorów wzrostu w pożywce. Niskie natężenie światła okazało się czynnikiem stymulującym apogamię oraz najsilniej ograniczającym zdolność gametofitów do rozmnażania płciowego. Całkowite zaciemnienie gametofitów, niezależnie od stymulacji sacharozą, hamowało występowanie apogamii (Walker 1979, Whittier 1976). W warunkach krótkiego dnia, przy stymulacji podwyższonym poziomem cukrowców, wydatnie zwiększała się liczba apogamicznych sporofitów na przedroślach Pteridium aquilinum. Z kolei wysokie natężenie światła, przy wysokim poziomie glukozy w pożywce, wywierało efekt antagonistyczny, hamujący apogamię (Whittier 1976). Jeśli gametofity rozwijały się bezpośrednio na tkankach sporofitu lub za pośrednictwem kalusa, stymulowanie apogamii nie wymagało dostawy cukrowców, tak jak w przypadku pobudzania do apogamii gametofitów rozwijających się z zarodników. Apogamia *in vitro* zachodziła w warunkach równowagi między stymulującym działaniem cukrowców a hamującym oddziaływaniem ciśnienia osmotycznego (Whittier 1976).

Czynnikiem w sposób znaczący predestynującym przedrośla do apogamii był podwyższony poziom ich ploidalności. W poliploidalnych gametofitach występował specyficzny czynnik "apogamy factor", który po osiągnięciu dojrzałości przedrośli zapoczątkowywał apogamiczny rozwój inicjałów sporofitowych (Bell 1992). Tworzeniu tych inicjałów sprzyjał wzrost koncentracji soli mineralnych w wysychającej pożywce oraz przedłużający się okres między pasażami (prawdopodobnie związany również z nagromadzeniem się etylenu w naczyniach) (Whittier 1976). W warunkach eksperymentalnych stopień uwodnienia pożywki wywiera istotny wpływ na przebieg apogamii, ponieważ gametofit jako struktura starsza ewolucyjnie jest bardziej uzależniony od obecności wody niż sporofit. Jest więc znamienne, że częstość apogamii jest zdecydowanie wyższa u gatunków tolerujących niedostatek wody, niż u gatunków, które takich przystosowań nie posiadaja.

Zjawisko aposporycznego tworzenia się gametofitów w obrębie blaszki liściowej in vitro wyjaśnia teoria autolizy, wg której gametofit rozwija się z pojedynczych komórek subepidermalnych lub miękiszowych (ocalałych w strefie nekrozy), które w następstwie redukcji objętościowej funkcjonują jak zarodnik, dając początek protonemie, rozwijającej się w młody gametofit (Bell 1979). Teorie te podważono na podstawie obserwacji gametofitów na juwenilnych liściach Pteridium aquilinum już po trzech dniach od wyłożenia na pożywkę. W tak krótkim czasie nie mogłoby dojść do autolizy komórek inicjujących proces apogamii. W świetle obecnej wiedzy, trafniejsze byłoby przyjęcie założenia o ułatwionym przejściu od jednej do drugiej generacji, przy zachowaniu cech obydwu pokoleń, co potwierdza przebieg rozwoju protoplastów izolowanych z liści Lygodium japonicum, które dzieliły się i formowały plechę gametofitu wg wzorca rozwojowego typowego dla kiełkowania zarodników własnego gatunku *in vivo* (Bell 1979, Nakamuro, Maeda 1975).

Kolejną próbę wyjaśnienia przyczyn aposporii podjęto w oparciu o teorię "głodzenia", zgodnie z którą niedobory pokarmowe indukowały tworzenie się gametofitu bezpośrednio na sporoficie. Pod wpływem deprywacji pokarmowej wywołanej ustaniem dostaw weglowodanów z miękiszu spichrzowego kłącza lub fylopodiów, postępujące drobnienie skierowywało rozwój merystemu wierzchołkowego ku formom, które w uproszczonej postaci wykazywały wyższą odporność na działanie czynników stresowych, niż formy ontogenetycznie starsze (Materi, Cumming 1990). Zdolność do aposporii obniżała się z wiekiem liścia i kolejnością jego rozwijania się na osi (Hirsch 1975, Materi, Cumming 1990, Von Anderkas 1986). Gametofity nie regenerowały in vitro z liści już zarodnikujących. Nieskuteczne okazały się próby przełamania tej bariery przez stosowanie podwyższonych dawek cytokinin lub cukrowców (Zenkteler 2000b). Powstawanie gametofitów z wegetatywnych tkanek sporofitu potwierdza wysoką zdolność do ontogenetycznej rewersji u paproci (Hirsch 1975, Lawton 1932).

Struktury otrzymane podczas bezpośredniej regeneracji kulistych pąków przybyszowych z tkanek sporofitu, nie przypominają typowej budowy protomerystemu paproci. Z pąków tych rozwijały się zawiązki pierwszych liści sporofitu. Podobne struktury obserwował Whittier (1978), który sugerował, że merystem wierzchołkowy pąka powstaje na krótki okres, by wkrótce przekształcić się w kolejne zawiązki liści.

Analizując wpływ czynników środowiskowych na zdolność eksplantatów paproci do regeneracji *in vitro*, stwierdzono korelację dodatnią między niedostatkiem (wody, światła, pokarmu) a regresją do form ontogenetycznie młodszych (gametofitów), odpornych na działanie czynników stresowych. Od dawna postulowano konieczność przeprowadzenia kompleksowych badań nad reakcją przedrośli na suszę oraz związane z nią wysokie bądź niskie temperatury (Kornaś 1988). Nadal niewiele możemy powiedzieć o tym, jak długo mogą żyć przedrośla, czego skrajnym przypadkiem są gametofity niezidentyfikowanych gatunkowo paproci, których faza sporofitowa jest nieznana (nie uzyskano jej również w warunkach laboratoryjnych). Rosną one na obficie nawilżonych ścianach kanionów w Appalachach, gdzie od lat rozmnażają się wyłącznie wegetatywnie (Farrar 1985, Gastony 1977).

LITERATURA

- ASKER S. E., JERLING L. 1992. Apomixis in plants. CRS Press, Boca Raton.
- BATYGINA T. B. 1989. New concept of asexual reproduction in flowering plants. W: J. PARE, M. BUGNIOCOURT (red.), Some aspects and actual orientations in plant embriology. Univ. Amiens, s. 28–44.
- BELL P. R. 1979. The contribution of the ferns to an understanding of the life cycles of vascular plants. W: A. F. DYER (red.), The experimental biology of ferns. Ac. Press, London, N.Y., San Francisco, s. 57–85.
- BELL P. R. 1981. The phase change in ferns. *Acta Soc. Bot. Pol.* **50**: 307–314.
- BELL P. R. 1992. Apospory and apogamy: Implications for understanding the plant life cycle. *Int. J. Plant Sci.* 153: 123–136.
- BIR S. S., ANAND M. 1982. Morphogenetic studies on pteridophytes in India. Aspect of Plant Sc. 6: 105–118.
- BRAITHWAITE A. F. 1964. A new type of apogamy in ferns. *New Phytol.* **63**: 293–305.
- COVE D. J., KNIGHT C. D. 1993. The moss *Physcomitrella patens*, a model system with potential for the study of plant reproduction. *Plant Cell* **5**: 1483–1488.
- CZAPIK R. 1996. Problems of apomictic reproduction in the families Compositae and Rosaceae. *Folia Geobot. Phytotax.* 31: 381–387.
- DELEVORYAS T. 1966. Ewolucyjne różnicowanie się roślin. PWN, Warszawa.
- EVANS A. M. 1964. Ameiotic alternations of generations: a new life cycle in ferns. *Science* **143**: 261–263.
- FARRAR D. R. 1985. Independent fern gametophytes in the wild. *Proc. R. Soc. Edinb.* **86B**: 361–369.
- GASTONY G. J. 1977. Chromosome of the independently reproducing Appalachian gametophyte: a new source of taxonomic evidence? *Syst. Bot.* **2**: 43–44.
- HIRSCH A. M. 1975. The effect of sucrose on the differentiation of excised fern leaf tissue into either gametophytes or sporophytes. *Plant Physiol.* 56: 390–393.

- JAIN R. K., DAVEY M. R., COCKING E. C., WU R. 1997. Carbohydrate and osmotic requirements for high frequency plant regeneration from protoplast-derived colonies of indica and japonica rice varieties. J. Exp. Bot. 48: 751–758.
- KATO Y. 1973. Control of rhizoids formation in the fern gametophyte. 1. The effect of sugars. *Cytologia* 38: 117–124.
- KLEKOWSKI E. J. 1979. The genetics and reproductive biology of ferns. W: A. F. DYER (red.), The experimental biology of ferns. Acad. Press, London, N.Y., s. 133–170.
- KORNAŚ J. 1988. Strategie przystosowawcze paprotników w strefie sawannowej Afryki tropikalnej. *Wiad. Bot.* 32: 21–46.
- KSHIRSAGAR M. K., MEHTA A. R. 1978. In vitro studies in ferns: growth and differentiation in rhizome callus of *Pteris vittata. Phytomorph.* 28: 50–58.
- KURIYAMA A., HOJOH T., MATSUSHIMA H., TAKEUCHI M. 1990. Histological and morphological observation of sporophytic shoot of *Equisetum arvense* produced from gametophytic cells by exogenously supplied cytokinin. *J. Plant Physiol.* **137**: 20–24.
- KWA S. H., WEE Y. C., LOH C. S. 1991. Production of aposporous gametophytes and calli from *Pteris vittata* L. pinnae strips cultured *in vitro*. *Plant Cell Reports* 10: 392–393.
- LAWTON E. 1932. Regeneration and induced polyploidy in ferns. Am. J. Bot. 19: 303–333.
- LIN S. J., KATO M., IWATSUKI K. 1992. Diploid and triploid offspring of triploid agamosporous fern *Dryopteris* pacifica. Bot. Mag. Tokyo 105: 443–452.
- LIN S. J., KATO M., IWATSUKI K. 1995. Electrophoretic variation of the apogamous *Dryopteris varia* group (Dryopteridaceae). J. Plant Res. 108: 451–456.
- MANTON I. 1950. Problems of cytology and evolution in the Pteridophyta. Cambridge University Press.
- MATERI D. M., CUMMING B. G. 1990. Effects of carbohydrate deprivation on rejuvenation, apospory, and regeneration in ostrich fern (*Matteucia struthiopteris*) sporophytes. *Can. J. Bot.* 69: 1241–1245.
- MEHRA P. N. 1983. Apogamy in Adiantum lunulatum Burm. Proc. Indian Acad. Sci. 8: 192–201.
- MEHRA P. N., PALTA H. K. 1971. In vitro controlled differentiation of the root callus of Cyclosorus dentatus. Phytomorph. 21: 367–375.
- MEHRA P. N., SULKLYAN D. S. 1969. In vitro studies on apogamy, apospory and controlled differentiation of rhizome segments of the fern Ampelopteris prolifera (Retz.) Copel. Bot. J. Linn. Soc. 62: 431–443.
- NAKAMURO M., MAEDA M. 1965. Gametophytes derived from sporophytic tissues in a fern Lygodium japonicum

L. 1. Induction of the gametophytes and their protoplast isolation. *J. Plant Physiol.* **145**: 185–188.

- RAGHAVAN V. 1989. Developmental biology of fern gametophytes. Cambridge University Press.
- REJMENT-GROCHOWSKA I. 1977. Cykle rozwojowe roślin. PWN, Warszawa.
- RESENDE F. 1967. General principles of sexual and asexual reproduction and life cycles. *Handb. d. Pflanzenphysiol.* Bd XVIII: 257–281.
- ROBERT D., DUMAS C., BAJON C. 1994. Cycles de développement et alternance de générations. W: La reproduction. Doin ed., Paris, s. 60–100.
- SHEFFIELD E. 1985. Cellular aspects of the initiation of aposporous outgrowths in ferns. *Proc. Roy. Soc. Edinb.* 86B: 45–50.
- SHEFFIELD E., BELL P. R. 1981. Experimental study of apospory in ferns. Ann. Bot. 47: 187–195.
- SHEFFIELD E., BELL P. R. 1987. Current studies of the pteridophyte life cycle. *Bot. Rev.* 53: 442–490.
- SMITH G. 1955. Cryptogamic botany. 1. Bryophytes and Pteridophytes, 2nd ed. McGraw-Hill, New York.
- SOLTIS D. E., SOLTIS P. 1992. The distribution of selfing rates in homosporous ferns. *Am. J. Bot.* **79**: 97–100.
- STEBBINS G. L. 1958. Zmienność i ewolucja roślin. PWN, Warszawa.
- STEIL W. N. 1951. Apogamy, apospory and parthenogenesis in the pteridophytes. *Bot. Rev.* 17: 90–104.
- TILQUIN J. P. 1981. Note on apomixis in ferns. Acta Soc. Bot. Pol. 50: 217–222.
- VALERO M., RICHERD S., PERROT V., DESTOMBE CH. 1992. Evolution of alternation of haploid and diploid phases in life cycles. *Trees* 7: 25–29.
- VON ANDERKAS D. 1986. Enhancement of apospory in liquid culture of *Matteucia struthiopteris*. Ann. Bot. 57: 505–510.
- WAGNER W. H., WAGNER F. S., REZNICEK A. N. 1992. X Doryostichum singulare (Dryopteridaceae), a new fern nothogenus from Ontario. Can. J. Bot. 70: 245–253.

- WALKER T. G. 1979. The cytogenetics in ferns. W: A. F. DYER (red.), The experimental biology of ferns. Ac. Press London, N.Y., San Francisco, s. 87–132.
- WALKER T. G. 1985. Some aspect of agamospory in ferns – The Braithwaite system *Proc. Roy. Soc. Edinb.* 86B: 59–66.
- WHITTIER D. P. 1962. The origin and development of apogamous structures in the gametophyte *Pteridium* in sterile culture. *Phytomorph.* 12: 10–20.
- WHITTIER D. P. 1964. The influence of cultural conditions on the induction of apogamy in *Pteridium* gametophytes. *Am. J. Bot.* **51**: 730–736.
- WHITTIER D. P. 1976. Tracheids, apogamous leaves, and sporophytes in gametophytes of *Botrychium dissectum*. *Bot. Gaz.* 137: 237–241.
- WHITTIER D. P. 1978. Apospory in haploid leaves of Botrychium. Phytomorph. 28: 215–219.
- WHITTIER D. P., THOMAS R. D. 1993. Gametophytes and young sporophytes of *Botrychium jenmanii* in axenic culture. *Int. J. Plant Sci.* 154: 68–74.
- WILLEMSE M. T. M. 1984. Sexual reproduction of seed plants, ferns and mosses. A background. W: Sexual reproduction in seed plants, ferns and mosses. Proc. 8 Int. Symp. Sex. Repr., Wageningen, s. 194–197.
- ZENKTELER E. 1993. Homo- and heterophasis in *in vitro* reproduction of *Phyllitis scolopendrium* (L.) Newm. *Bull. PAN, ser. Biol.* 41: 257–261.
- ZENKTELER E. 1997a. Apomixis in ferns. Alternation of generations without syngamy and meiosis. *Acta Biol. Crac.* 39, suppl. 1: 37.
- ZENKTELER E. 1997b. Modyfikacje cyklu życiowego Thelypteris palustris indukowane działaniem cukrowców w warunkach in vitro. Zesz. Nauk. Akad. Roln. im. H. Kollątaja w Krakowie 318: 359–366.
- ZENKTELER E. 2000a. Systemy wegetatywnego rozmnażania paproci in vivo oraz in vitro. Wyd. Nauk. UAM, Poznań.
- ZENKTELER E. 2000b. Fern embryology and reproduction. Botanical Guidebooks 24: 151–167.