JAK I DLACZEGO GINA NASZE ZESPOŁY ROŚLINNE ${ }^{1}$

Recent decay of plant associations in Poland

Jan Kornaś

Summary. About 1950 many projects concerning the phytosociological inventories of various regions in Poland were started. For the first time not only the natural community types, but also the anthropogenic ones were taken into account. A wide spectrum of regional monographs was published, containing complete phytosociological tables, often with detailed maps of the actual vegetation. Unexpectedly most of these data very soon acquired historical value, because of the far-going changes of vegetation during the last 30 years. These changes may be most precisely documented by repeating the former phytosociological surveys using one of the three possible methods: (1) repeating of phytosociological relevés on permanently marked study plots, (2) collecting of new representative sets of relevés on the whole area formerly studied and comparing the new phytosociological tables with the corresponding old ones, (3) renewed mapping of the actual vegetation in the area formerly mapped. The present paper discusses the results of application of all three of these procedures.

Phytosociological studies carried out by Anna Medwecka-Kornas and the present author about 1950 in the Gorce Mts. and about 1960 in the Ojców National Park were recently repeated. Far-going changes in both areas were discovered. In the Gorce Mts. from among 28 more important plant community types not less than 22 receded (1 community type extinct, 8 community types threatened with extinction in the nearest future, 13 community types rapidly retreating or becoming deeply transformed throughout the whole area - Tab. 1). These changes concerned both the natural plant communities of forests, tall forb stands, moss communities in springs, gravel beds on river banks, bogs and mires, etc., and the anthropogenic (secondary) communities of seminatural meadows and pastures as well as synanthropic communities of arable fields. In their stead only seven more or less ubiquitous community types expanded (Tab. 2). At the same time many species, both native and permanently established aliens, retreated, and a small group of most aggressive synanthropic newcomers considerably expanded. The causes for the vegetation changes in the lower-altitude areas of the Gorce Mts. were: (1) the devastation and ruderalization of riverside habitats, (2) the extension of built-up areas, (3) the construction of new roads and highways, (4) the conversion of meadows into monocultures of fodder grasses, (5) the modernization of agriculture, especially of the methods of weed control (cleaning of seed material and use of herbicides). The vegetation changes in the higher-altitude areas resulted from: (1) the depression of vitality of forest trees, especially conifers, apparently because of long-distance air pollution, (2) the increased intensity of timber exploitation, connected with the construction of new logging tracks, (3) the recession of seasonal grazing and desistance of hay-meadows utilization, (4) the expansion of tourist traffic in both summer and winter. In the Ojców National Park the most striking changes occurred in the acidophilous forest communities and the hay-meadows. The acidophilous mixed forest community PinoQuercetum became nearly completely disintegrated due to the decay of coniferous trees, especially of fir (Abies alba), which was partly substituted by beech (Fagus silvatica). The shrub layer was invaded by the nitrophytes (Sambucus nigra, S. racemosa); in the field layer the acidophilous species retreated and their place was taken over by subneutrophilous species of forests, forest edges and felled forest areas; the moss layer disappeared nearly completely (Tab. 3). The rich hay-meadows Arrhenatheretum elatioris, which formerly occupied the valley bottoms in the park area, became highly impoverished (because of more intensive use and fertilization) or they were substituted by nitrophilous tall-forb vegetation, dominated by Urtica dioica (after cessation of hay-mowing). Similarly as in the Gorce Mts., the changes in the vegetation types (Tab. 4) were connected with a drastic decrease of species diversity because of the recession or even extinction of many rare native species and some well established synanthropic ones (Tab. 5).

[^0]
Abstract

The Gorce Mts. and the Ojców National Park are two very typical examples of the dramatic transformation of the plant cover which occurs recently in the whole territory of Poland and concerns a large majority of the plant community types. In the natural plant communities this is caused mainly by the ever increasing anthropopression through locally acting factors and the long-distance pollution of air and water. In the secondary (anthropogenic) communities the most important reasons for vegetation changes seem to lie in changes of the management regimes, either through intensifying or through abandoning the traditional methods.

Key words: plant associations decay, Poland, Gorce Mts., Ojców National Park
Prof. dr Jan Kornaś, Instytut Botaniki, Uniwersytet Jagielloniski, ul. Lubicz 46, 31-512 Kraków

WSTEP

Jest faktem powszechnie znanym, że zespoły roślinne stanowią daleko bardziej czule wskaźniki (bioindykatory) warunków środowiskowych, aniżeli poszczególne gatunki roślin. Na sesji poświęconej tematowi Roślina a środowisko nie można więc pominąć fitosocjologicznego aspektu tej zależności. Badania fitosocjologiczne w Polsce, prowadzone od początku lat 1920-tych, nasilily się szczególnie w latach 1950-tych, kiedy po raz pierwszy zaczęto zwracać uwage w równej mierze na zbiorowiska naturalne, rozwijające się spontanicznie, bez ingerencji człowieka, jak i na zbiorowiska antropogeniczne. Powstaly wówczas liczne monografie regionalne, opublikowane przeważnie z pełnym materialem tabelarycznym, a nierzadko także mapami roślinności rzeczywistej. Jednym z najważniejszych celów, jaki przyświecal tym badaniom, było opracowanie pelnego przeglądu zbiorowisk roślinnych calego kraju i stworzenie dla nich ujednoliconej klasyfikacji syntaksonomicznej. Wyrazem takiego dążenia stały się m. in. trzy wersje przeglądu zespołów roślinnych, zamieszczone w kolejnych wydaniach Szaty roslinnej Polski [23, 24, 25], systematyczne przeglądy różnych grup zbiorowisk leśnych pióra Władysława Matuszkiewicza i jego wspólpracowników oraz Przewodnik do oznaczania zbiorowisk roślinnych Polski tegoż autora [15].

Budowa syntaksonbmicznego systemu zbiorowisk roślinnych Polski nie została jeszcze doprowadzona do końca. Co więcej, w
miarę upływu lat jej ukończenie oddala się coraz bardziej: piętrzące się trudności są coraz większe, rozbieżności w ujęciach różnych autorów - coraz wyraźniejsze. Wśród przyczyn takiej sytuacji najważniejsza jest niewatpliwie ta, że w ostatnim trzydziestoleciu zaznaczyło sié w całym kraju niespotykane dawniej nasilenie zmian środowiskowych i z wiązanych z nimi zmian zbiorowisk roślinnych. Trwate do niedawna, dobrze określone co do składu florystycznego i wymagań siedliskowych zespoly roślinne ulegają w naszych oczach dezintegracji, ustępujac miejsca coraz bardziej labilnym i niejednorodnym, a przez to coraz trudniejszym do systematycznego zaszeregowania stadiom rozpadowym. W rozważaniach syntaksonomicznych pojawil się nowy wymiar, jakim jest wymiar czasu.

Dzięki obszernym materiałom fitosocjologicznym z lat 1950-tych dysponujemy dziś w Polsce znakomitymi danymi wyjściowymi dla ścislego ustalenia zmian roślinności w ostatnim trzydziestoleciu. Metodyka badawcza może być przy tym trojaka; może ona polegać na:
(1) powtórzeniu zdjęć fitosocjologicznych na dawnych powierzchniach badawczych;
(2) ponownym zgromadzeniu materialu zdjęciowego z terenu opracowanego poprzednio i porównaniu obecnych tabel z dawnymi;
(3) ponownym skartowaniu roślinności rzeczywistej na terenach, dla których dysponujemy dawniejszymi mapami fitosocjologicznymi.

Pierwszy z wymienionych sposobów po-
zwala na najbardziej szczegółowa analize zmian, jakie się dokonaly. Niestety, tylko w niewielu przypadkach pomyślano przed laty o dopelnieniu wszystkich niezbędnych warunków dla wiarygodnego zastosowania takiej techniki (trwałe oznaczenie powierzchni badawczych, dokumentacja fotograficzna itd.). Sposób drugi jest stosunkowo najprostszy i moze być najszerzej stosowany z dobrymi - jak się okazuje - wynikami. Sposób trzeci, dający wyniki najbardziej obrazowe, ograniczony jest tylko do nielicznych terenów, skartowanych kiedyś pod względem roślinności rzeczywistej.

Przedmiotem mego wystąpienia jest omówienie wyników dwóch przykładowych regionalnych opracowan fitosocjologicznych, ukazujacych przemiany zbiorowisk roślinnych w ostatnim trzydziestoleciu na dwóch wzorcowych obszarach, górskim - w Gorcach i wyżynnym - w Ojcowskim Parku Narodowym, oraz przedstawienie próby uogólnienia tych wyników.

PRZEMIANY ZBIOROWISK ROSLINNYCH W GORCACH

Gorce zostaly szczegółowo zbadane pod względem fitosocjologicznym na początku lat 1950-tych. Zgromadzono przy tym pelny materiał zdjeciowy ze wszystkich występujących na tym terenie typów zbiorowisk roślinnych [$8,14,16]$ i skartowano roślinność rzeczywista dwóch reprezentatywnych wycinków - mało zmienionego przez działalność ludzka rezerwatu leśnego Turbacz im. Władyslawa Orkana [21] i silnie przeksztatconych dolin potoków Jamne i Jaszcze w Ochotnicy Górnej [20]. Równolegle z badaniami fitosocjologicznymi wykonano szczegółowe badania florystyczne [3, 4]. Potem prowadzono w sposób niemal nieprzerwany ekstensywne obserwacje nad zmianami szaty roślinnej, a nasilono je zwłaszcza w latach 1980-tych [5, $6,7,9,10,11]$.

Porównanie obecnego stanu szaty roślinnej Gorców ze stanem sprzed $30-40$
lat ujawnia powszechne i bardzo daleko idace zmiany. Jeśli przyjać podobne kryteria określania stopnia zagrożenia zbiorowisk roślinnych, jak te które zastosowała dla polskiego Nizu Hanna Piotrowska [22], można stwierdzić, że na 28 ważniejszych typów zbiorowisk roślinnych wyróżnionych w Gorcach okolo 1950 r. (przeważnie w randze zespołów) aż 22 typy sa, mniej lub bardziej zagrożone wyginięciem (1 zbiorowisko całkowicie zanikle, 7 zbiorowisk zagrożonych na najbliższą przyszlość i 14 zbiorowisk zagrożonych na dalszą metę - tab. 1). Na ich miejsce rozprzestrzenia się zaledwie 7 typów wybitnie zubożalych zbiorowisk ubikwistycznych (tab. 2).

Tok zachodzących w Gorcach przemian zbiorowisk roślinych jest inny w położeniach niższych, a inny w wyższych częściach pasma. Położenia niższe (do wysokości 700-800 m n.p.m.) sa od dawna odlesione i zajęte pod uprawę rolna. Najnowsze zachodzące w nich przemiany roślinności wyrażaja się przede wszystkim :
(1) zanikiem ogromnej większości istniejacych dotąd skrawków roślinności naturalnej (nadrzecznej, wodnej, blotnej, zaroślowej i leśnej);
(2) znacznym zmniejszeniem się powierzchni zajętej przez na pół naturalna roślinność łąkową i pastwiskową;
(3) ustępowaniem licznych rodzimych gatunków roślin (zwłaszcza wodnych, błotnych, łakowych i pastwiskowych);
(4) rozpadem istniejacych dawniej zbiorowisk polnych [5, 11];
(5) zanikiem wyspecjalizowanych chwastów polnych (np. upraw lnu: Camelina alyssum, Cuscuta epilinum, Lolium remotum, Spergula maxima, lub upraw zbożowych: Bromus arvensis, Fagopyrum tataricum);
(6) ustępowaniem wielu innych gatunków segetalnych (np. Avena strigosa, Rhinanthus alectorolophus subsp. buccalis, Rh. glaber subsp. apterus, a także Agrostemma githago, Bromus secalinus, Lolium temulentum i in.);
(7) ekspansją nowych przybyszów sy-

TABELA 2. Zbiorowiska roślinne rozprzestrzeniające się współcześnie w Gorcach.
TABLE 2. Expanding (hemerophilous) plant communities in the Gorce Mts.

```
- wtórne młodniki świerkowe (z samosiewu i nasadzeń)
young secondary stands of Picea excelsa
- borówczyska (z Vaccinium myrtillus)
thickets of Vaccinium myrtillus
- zbiorowiska zrębowe (Atropetalia)
communities of felled forest areas (Atropetalia)
- inicjalne stadia z dominacja roślin zielnych (Senecio Fuchsii, Chamaenerion angustifolium i in.)
    initial stages with herbaceous vegetation
    - stadia zaroslowe z dominacja jeżyn (Rubus hirtus, R. idaeus)
    advanced stages dominated by shrubs
- fragmentaryczne (,kadłubowe") zbiorowiska psiar (bliźniczysk - Nardetalia fragm.)
    oligotrophic mat-grass communities (Nardetalia fragm.)
monokultury traw pastewnych
    fodder grass monocultures
- fragmentaryczne („kadłubowe") zbiorowiska segetalne (Secali-Violetalia fragm.)
    fagmentary ("truncated") segetal communities (Secali-Violetalia fragm.)
- zbiorowiska ruderalne (różnych typów)
    ruderal communities (various types)
```

nantropijnych (np. Elsholzia ciliata, Galinsoga ciliata, Impatiens parviflora, Juncus tenuis i in.).

Głównymi przyczynami tych przemian sa:
(1) zniszczenie (ruderalizacja) siedlisk nadrzecznych (zamienionych w znacznej cześci na dzikie wysypiska śmieci);
(2) zabudowa terenów w sąsiedztwie wsi i z dala od wsi (domki letnie);
(3) rozbudowa sieci dróg (stanowiạcych szlaki masowej migracji synantropów);
(4) zamiana na pół naturalnych lak kośnych na monokultury roślin pastewnych;
(5) modernizacja agrotechniki i z większenie efektywności walki z chwastami polnymi (zwlaszcza poprzez skuteczniejsze oczyszczanie materialu siewnego i stosowanie herbicydów).

Wyższe polożenia Gorców, wznoszace się ponad $700-800 \mathrm{~m} \mathrm{n}. \mathrm{p}. \mathrm{m.} ,\mathrm{pozostaly} \mathrm{do} \mathrm{dziś}$ zalesione, jeśli nie liczyć rozleglych wtórnych polan, rozlokowanych głównie na grzbietach i użytkowanych tradycyjnie jako laki kośne i pastwiska. Rola obcych gatunków synantropijnych jest tu ciagle jeszcze niewielka;
z przybyszów najnowszych szerzej rozprzestrzenil się tylko jeden: Epilobium adenocaulon. Natomiast - pomimo utworzenia w 1980 r. Gorczańskiego Parku Narodowego (5908 ha) - dokonaly sie tutaj ostatnio i dokonuja nadal bardzo istotne przesuniẹcia równowagi pomiędzy istniejącymi zbiorowiskami roslinnymi, prowadzace do zaniku najbardziej interesujacych spomiędzy nich.

W obrębie zbiorowisk leśnych obu pięter reglowych zaznaczyla sie przede wszystkim masowa inwazja gatunków zrębowych (Chamaenerion angustifolium, Senecio Fuchsii, Rubus idaeus, R. hirtus i in.) oraz osłabienie żywotności i obumieranie drzew szpilkowych: świerka i jodły. Rozmiary prawdziwej katastrofy ekologicznej przybralo obumieranie świerczyn górnoreglowych na Turbaczu i Kudłoniu (w roku 1982 na powierzchni ponad 1000 ha), tym bardziej niebezpieczne, że w tym piętrze wysokościowym nie ma już właściwie żadnego innego gatunku drzewa, który mógłby zastapić ginacy świerk w drzewostanach [2]. Przyczyny zmian zachodzących w lasach Gorców tkwia zarówno w rabunkowym zwiększeniu eks-

Nazwa zbiorowiska ${ }^{x}$ Plant community ${ }^{x}$

Stopień zagrożenia ${ }^{x x}$ Degree of endangerment ${ }^{x x}$

Przyczyny ustepowania Causes of retreat

Zbiorowiska naturalne (leśne, nadpotokowe i naskalne)
Natural communities of forests, river banks and rocks
grąd Tilio-Carpinetum 1
olszyna karpacka Alnetum incanae 2
buczyna karpacka Dentario glandulosae-Fagetum
kwaśna buczyna górska Luzulo nemorosae-Fagetum
bór jodłowo-świerkowy regla dolnego Abieti-Piceetum montanum
bór świerkowy regla górnego Piceetum tatricum subnormale
zbiorowiska kamieńców nadrzecznych Myricarietalia
ziołorośla z omiegiem austriackim Arunco-Doronicetum austriaci
topuszyny Petasiteum Kablikiani
mtaki zioloroslowe z Caltha laetai Chaerophyllum hirsutum
fragmenty zbiorowisk wysokotorfowiskowych Sphagnion fusci
mszarniki źródliskowe Cardamino-Cratoneuretum
fragmenty zbiorowisk naskalnych Asplenietea rupestris
Zbiorowiska na wpół naturalne (łakowe i pastwiskowe)
Seminatural communities of meadows and pastures
górskie tąki mietlicowe Gladiolo-Agrostietum
kośne traworośla Poo-Veratretum Lobeliani
mtaki turzycowe Valeriano-Caricetum flavae
psiary (bliźniczyska) Hieracio-Nardetum strictae
thoki Calluno-Nardetum strictae
blonia Lolio-Cynosuretum alchemilletosum
murawki kserotermiczne Thymo-Potentilletum puberulae
Zbiorowiska synantropijne (segetalne)
Synanthropic communities of cultivated fields
zespót upraw zbóż i okopowych Geranio-Silenetum gallicae
zespół upraw Inu Spergulo-Lolietum remoti
odlesienie, wypas, wysypiska śmieci
deforestation, grazing, rubbish dumping
regulacja rzek, odlesienie, wypas, wysypiska śmieci
river regulation, deforestation, grazing, rubbish dumping
eksploatacja drewna, monokultury drzew szpilkowych
forest exploitation, monocultures of conifers
eksploatacja drewna, monokultury drzew szpilkowych forest exploitation, monocultures of conifers
eksploatacja drewna, zanieczyszczenia powietrza, klęski owadzie forest exploitation, air pollution, insect outbreaks
eksploatacja drewna, zanieczyszczenia powietrza, klęski owadzie forest exploitation, air pollution, insect outbreaks
regulacja rzek, eksploatacja żwiru, wysypiska śmieci river regulation, gravel exploitation, rubbish dumping
eksploatacja i transport drewna, budowa dróg leśnych
forest exploitation, transport of timber, road construction
transport drewna, budowa dróg leśnych
transport of timber, road construction
eksploatacja i transport drewna, odwodnienie
forest exploitation, transport of timber, drainage
odwodnienie, zanieczyszczenia powietrza (?)
drainage, air pollution (?)
transport drewna, budowa dróg leśnych, ujęcia wodne transport of timber, road construction, water consumption budowa dróg, kamieniołomy
road construction, stone quarrying
zaniechanie tradycyjnych sposobów użytkowania (gospodarki szataśniczej) abandoning old management methods
zaniechanie tradycyjnych sposobów użytkowania (gospodarki szataśniczej) abandoning old management methods
zaniechanie tradycyjnych sposobów użytkowania, odwodnienie abandoning old management methods, drainage
zaniechanie tradycyjnych sposobów użytkowania, sztuczne zalesianie abandoning old management methods, afforestation
zaniechanie tradycyjnych sposobów użytkowania, sztuczne zalesianie abandoning old management methods, afforestation
zaniechanie tradycyjnych sposobów użytkowania
abandoning old management methods
zaniechanie tradycyjnych sposobów użytkowania
abandoning old management methods
modernizacja agrotechniki (oczyszczanie materialu siewnego, herbicydy) modernizing agricultural technics
modernizacja agrotechniki (oczyszczanie materialu siewnego, zaniechanie up modernizing agricultural technics
${ }^{x}$ klasyfikacja i nomenklatura zbiorowisk wg Kornasia i Medweckiej-Kornaś [8, 14, 16, 20] syntaxonomical classification and nomenclature according to Kornaś and Medwecka-Kornas [8, 14, 16, 20]
${ }^{x x}$ skala stopni zagrożenia wg Piotrowskiej [22]: 0-zbiorowiska zanikle, 1-zbiorowiska zagrożone wýginięciem w najbliższej przyszlości, 2 - zbiorowiska gwaltownie us b. silnie przeksztalcone, 3-zbiorowiska ustępujace endangerment degrees according to Piotrowska [22]: 0-extinct, 1 - immediately threatened with extiriction, 2 - rapidly retreating or becoming strongly modified, 3 -
ploatacji drewna (która bynajmniej nie oszczędza Gorczańskiego Parku Narodowego), jak i w osłabieniu żywotności miejscowych drzewostanów szpilkowych, przede wszystkim przez imisje SO_{2} i innych przemyshowych zanieczyszczeń powietrza, pochodzących z dalekiego transportu. Ostabione drzewostany padly ostatnio ofiarą klessk owadzich: zasnui wysokogórskiej (Cephalcia falleni) w reglu górnym [1, 2] oraz kornika drukarza (Ips typographus) w reglu dolnym. Spośród pasożytów grzybowych szczególnie destrukcyjnie działala opieńka (Armillaria mellea).

Do zrywki i transportu drewna, pochodzącego z trzebieży martwych i obumierajacych drzewostanów (w tym także świerczyn górnoreglowych, specjalnie wyłączonych dla umożliwienia założenia w nich czystych zrębów - z sieci rezerwatów ścislych Gorczańskiego Parku Narodowego) służy rozbudowana ostatnio sieć leśnych dróg wywozowych. Przeprowadzono je przeważnie dnami dolin i korytami potoków, co spowodowalo zniszczenie wielu najcenniejszych płatów naturalnych zbiorowisk nieleśnych, ograniczonych w Gorcach przede wszystkim do maleńkich skrawków siedlisk nad potokami: ziołorośli (Arunco-Doronicetum austriaci), źródlisk (Cardamino-Cratoneuretum), żwirowisk (zbiorowiska rzędu Myricarietalia) itp.

Szczególnie gwaltownym zmianom ulega roślinność gorczańskich polan reglowych. Wiazze sié to z zanikiem tradycyjnej gospodarki szałaśniczej i zaniechaniem dotychczasowego zrównoważonego sposobu użytkowania, połączonego z regularnym nawozeniem polan metoda, koszarzenia. Doprowadzilo to do niemal zupełnego zaniku kwiecistych ląk kośnych (Gladiolo-Agrostietum, zwlaszcza w jego najżyźniejszej postaci G. - A. deschampsietosum) i kosnych traworosli (PooVeratretum Lobeliani). Na polanach koszonych nadal, lecz bez nawożenia, wyksztalcaja się nader ubogie płaty psiar z dominacja bliźniczki (Nardus stricta), stanowiạce fragmenty zbiorowisk z rzędu Nardetalia. Na polanach nie koszonych - po przejściowym
stadium borówczysk z Vaccinium myrtillus powstają z samosiewu młodniki świerkowe. Część wyłączonych z użytkowania polan sztucznie zalesiono świerkiem. W konsekwencji ustępują z polan gorczańskich liczne gatunki łakowe. Całkowicie wyginęł - jak się zdaje - Botrychium lanceolatum, Trollius europaeus, Alchemilla aequidens, Mutellina purpurea, a nawet Rumex alpinus; znacznie zmniejszyło swój stan posiadania wiele innych roślin łakowych, jak Crocus scepusiensis, Gladiolus imbricatus, liczne gatunki rodziny Orchidaceae i in. Do ich zaniku przyczynia się również wzmagający się z roku na rok, zarówno latem jak i zimą, ruch turystyczny.

Ogólny bilans omówionych zmian zbiorowisk roślinnych w catych Gorcach, od podnóży aż po najwyższe wzniesienia, sprowadza się do coraz dalej idacego zubożenia roślinności i flory. Podobnie niestety dzieje się także w innych pasmach Karpat polskich; sytuacja w Sudetach, dotkniętych na ogromnych przestrzeniach obumieraniem lasów, jest jeszcze bardziej dramatyczna.

OJCOWSKI PARK NARODOWY

Badania fitosocjologiczne w Ojcowskim Parku Narodowym (OPN) przeprowadzono pod koniec lat 1950-tych. Zgromadzono petny material zdjęciowy (opublikowany w postaci tabel syntetycznych), wyróżniono 28 głównych typów zbiorowisk roślinnych i przedstawiono ich ówczesne rozmieszczenie na mapie roślinności rzeczywistej w skali 1:10000 [19]. Porównanie tej mapy ze stanem obecnym ujawnia ogromne zmiany, przede wszystkim w odniesieniu do zbiorowisk leśnych i łąkowych.

Spośród zbiorowisk leśnych OPN stosunkowo niewielkim przeksztalceniom uległy subneutrofilne lasy liściaste na zboczach dolin (Tilio-Carpinetum, Dentario glandulosaeFagetum). Natomiast dramatyczne zmiany zaznaczyły się w acydofilnych borach mieszanych (Pino-Quercetum s.l.) na wierzchowi-
nie i jej krawędziach [17, 18]. Wyrazily się one przede wszystkim w obumieraniu drzew szpilkowych: jodły, rosnącej tu przeważnie z natury, i sosny, w znacznej części wprowadzonej sztucznie. Przyczyna obumierania drzew szpilkowych w OPN sa niewątpliwie imisje SO_{2} i innych toksycznych zanieczyszczeń powietrza, pochodzacych głównie ze Śląska, a w mniejszym stopniu także z Krakowa i Nowej Huty. Powstale w drzewostanach luki częściowo wypełnity drzewa liściaste, zwłaszcza buki. Prześwietlenie warstwy koron spowodowato inwazję nitrofilnych krzewów (Sambucus nigra, S. racemosa). W warstwie runa ustąpity względnie nawet zupełnie zanikły liczne acydofilne gatunki borowe (Vaccinium myrtillus, Lycopodium annotinum, L. selago, Pirola minor, P. secunda, mchy darniowe np. Entodon Schreberi, Polytrichum attenuatum i in.). W części platów pozostało jedynie bardzo skappe runo; w innych wzrósł udział subneutrofilnych gatunków z lasów liściastych klasy Querco-Fagetea; sporo jest płatów, w których zwiększyła się rola nitrofilnych gatunków okrajkowych (np. Impatiens parviflora) i zrębowych (np. Senecio Fuchsii). W konsekwencji uksztaltowały się zupelnie nowe, mniej lub bardziej kadłubowe typy zbiorowisk leśnych o zupełnie odmiennej przynależności syntaksonomicznej (tab. 3). Pociagnie to za sobą konieczność ponownego skartowania roślinności rzeczywistej w obrębie siedlisk wierzchowinowych w OPN. Podkreślić należy, że zmiany te dokonaty się w sporej części lasów ojcowskich zupełnie samorzutnie, przy zachowanym reżimie ścisłej ochrony rezerwatowej.

Natomiast na dnach dolin w obrębie OPN doszło do przekształceń niemniej radykalnych, lecz mających swe źródło bezpośrednio w zmianach sposobu użytkowania roślinności przez człowieka [12, 13]. Okolo roku 1960, gdy kartowano po raz pierwszy dna dolin OPN, panowaly tu żyzne, kwieciste łąki dwukośne (Arrhenatheretum medioeuropaeum alchemilletosum). W związku ze
zmianami w sposobie ich zagospodarowania w latach późniejszych dokonaly sié przeksztalcenia tego zespolu, które poszły w trzech kierunkach:
(1) Na łąkach używanych nadal do produkcji siana, koszonych dwukrotnie w ciągu roku, przy zwiększeniu intensywności nawożenia mineralnego, zdołało się utrzymać zubożałe Arrhenatheretum, pozbawione co prawda części swych dawnych składników, lecz nadal reprezentujące ten sam zespół.
(2) Na łakkach nie nawożonych i koszonych tylko raz w roku lub nawet rzadziej, z pozostawianiem siana na miejscu ${ }^{2}$, uformowaly się kadłubowe zbiorowiska łąkowe z udziałem okazatych roślin higrofilnych i nitrofilnych (takich jak Cirsium oleraceum, Deschampsia caespitosa, Dactylis glomerata i in.)
(3) Tam, gdzie całkowicie zaniechano koszenia, powstały bujne pokrzywiska z dominacja Urtica dioica i innych nitrofitów (Agropyron repens, Chaerophyllum aromaticum, Galium aparine, Rumex obtusifolius) i rozpoczełło się powolne wkraczanie gatunków leśnych, sygnalizujących przyszly kierunek sukcesji ku gradowi (TilioCarpinetum). Powtórne skartowanie zbiorowisk roślinnych na dnach dolin w OPN ujawnilo bardzo znaczne przesunięcia w zakresie powierzchni, zajmowanych przez poszczególne zbiorowiska (tab. 4): kośna łąka Arrhenatheretum zachowala się tylko na $1 / 3$ zajmowanej dawniej powierzchni, a żyzne pastwisko Lolio-Cynosuretum tylko na $1 / 10$ powierzchni. Natomiast nowy element, jakim sa pokrzywiska, opanować już zdołal $1 / 5$ powierzchni dna dolin.

Efektem zaszlych zmian jest daleko idace zubożenie florystyczne lak OPN (tab. 5), wyrazające się zanikiem wielu gatunków rzadkich (Phyteuma orbiculare, Alchemilla sp. div., Euphrasia sp. div.) i drastycznym zmniejszeniem się liczebności wielu

[^1]TABELA 3. Bór mieszany (Pino-Quercetum, wariant z Abies alba) w Ojcowskim Parku Narodowym: zmiany w występowaniu wybranych gatunków w ostatnim
TABLE 3. trzydziestoleciu [17]
TABLE 3. Pino-Quercetum, Abies alba variant in the Ojców National Park: changes in abundance of selected species during the last 30 years [17]

TABELA 4. Zmiany powierzchni zbiorowisk roślinnych na dnach dolin Ojcowskiego Parku Narodowego w ostatnim trzydziestoleciu
TABLE 4. Changes in areas occupied by various types of plant communities on valley bottoms of the Ojców National Park during the last 30 years

Zbiorowiska roślinne Plant communities	1959-1961		1988	
	ha	\%	ha	\%
rośliność naturalna natural vegetation	7,99	11,48	5,09	7,32
w tym skrawki lasów lęgowych Alno-Padion therein: riverine forest fragments Alno-Padion	6,62	9,51	3,01	4,32
roślinność na wpól naturalna (lakowa i past wiskowa) seminatural vegetation of meadows and pastures	35,12	50,51	52,91	76,08
w tym kośne ląki Arrhenatheretum elatioris therein: hay-meadows Arrhenatheretum elatioris	14,47	20,81	4,86	6,98
fragmenty Arrhenatheretum fragments of Arrhenatheretum	3,52	5,06	20,88	30,03
blonia Lolio-Cynosuretum pastures Lolio-Cynosuretum	10,05	14,46	1,14	1,65
pokrzywiska z Urtica dioica community of Urtica dioica	-	-	14,55	20,93
roślinność synantropijna synanthropic vegetation	26,44	38,01	11,55	16,60
w tym zbiorowiska segetalne Secali-Violetalia arvensis therein: communities of arable fields Secali-Violetalia	26,44	38,01	11,14	16,02

pospolitych gatunków ląkowych z rzędu Arrhenatheretalia (np. Campanula patula, Chrysanthemum leucanthemum, Crepis biennis, Knautia arvensis, Trifolium dubium, T. pratense i in.). Towarzyszy temu zanik wielu gatunków owadów związanych
z biotopem kwiecistych łąk (zwłaszcza antofilnych błonkówek i motyli). Czynione przez Dyrekcję OPN próby zachowania na łąkach dawnej różnorodności florystycznej i faunistycznej natrafiają na bardzo znaczne trudności.

TABELA 5. Ubożenie florystyczne zbiorowisk łakowych w Ojcowskim Parku Narodowym w ostatnim trzydziestoleciu
TABLE 5. Decrease of floristic diversity in the hay-meadows communities of the Ojców National Park during the last 30 years

	Zbiorowiska roslinne Plant communities	Srednia liczba gatunków/100 m^{2} Mean number of vascular plant species per $100 \mathrm{~m}^{2}$
	$1959-1961$	1988
łaka rajgrasowa Arrhenatheretum elatioris rich hay-meadow Arrhenatheretum elatioris zbiorowisko "kadtubowe" z Cirsium oleraceum "truncated" community of Cirsium oleraceum	54,1	33,3
pokrywisko 2 Urtica dioica tall-forb community of Urtica dioica	-	34,2

PODSUMOWANIE

Podobne do omówionych procesy rozpadu ustabilizowanych dotychezas zbiorowisk roślinnych zaznaczaja się w bardzo wielu ich typach we wszystkich regionach kraju. Wystarczy tu przypomnieć tragedię naszych lasów, calkowite niemal zniszczenie biotopów podmokłych (bagien i torfowisk), zanik kośnych ląk i ekstensywnych pastwisk oraz zbiorowisk segetalnych. Procesy te narastaly lawinowo zwlaszcza w latach 1970-tych i 1980-tych. Prowadzą one do coraz dalej sięgającego ujednolicenia i trywializacji szaty roślinnej kraju. Ich przyczyny tkwia we wszystkich niemal przypadkach w zmieniajacych się ostatnio formach ingerencji ludzkiej w przyrodzie. W odniesieniu do zbiorowisk naturalnych ma ona przeważnie charakter bezpośredniego niszczenia roślinności oraz radykalnych przekształceń warunków środowiskowych przez odwodnienie, skażenie powietrza, wód i gleby oraz eutrofizację siedlisk. Przyczyną rozpadu zbiorowisk antropogenicznych jest najczęściej zmiana dotychczasowych, ustalonych od dawna, sposobów gospodarowania, przy czym w grę wchodzi zarówno intensyfikacja użytkowania, jak i jego zaniechanie. Czy i jak można mimo wszystko uratować choć część dotychczasowej różnorodności szaty roślinnej kraju? Od znalezienia odpowiedzi na to pytanie zależeć będzie w dużej mierze jakość środowiska przyrodniczego, w jakim żyć przyjdzie przyszłym pokoleniom Polaków.

LITERATURA

[1] CAPECKI Z. 1982. Masowe wystapienie zasnui wysokogórskiej Cephalcia falleni (Dalm.), Pamphilidae, Hymenoptera w Gorcach. Sylwan 126(4): 41-50.
[2] DUbiEl a. 1989. Zmiany w górnoreglowym borze świerkowym w Gorcach w wyniku gradacji zasnui wysokogórskiej. Praca magisterska wykonana w Instytucie Botaniki U.J. (msk.).
[3] Kornaś J. 1955. Charakterystyka geobotaniczna Gorców. Monogr. Botan. 3: 1-216.
[4] KORNAS J. 1957. Rosliny naczyniowe Gorców.

Monogr. Botan. 5: 1-260.
[5] KORNAŚ J. 1961. The extinction of the association Spergulo-Lolietum remoti in flax cultures in the Gorce (Polish Western Carpathian Mountains). Bull. Acad. Polon. Sci. Cl. II ser. Sci. Biol. 9(1): 37-40.
[6] KORNAS J. 1963. Rosliny naczyniowe Gorców. Uzupemienie I. Fragm. Flor. Geobot. 9(2): 189-202.
[7] Kornaś J. 1966. Rosliny naczyniowe Gorców. Uzupehienie II. Fragm. Flor. Geobot. 12(2): 141-149.
[8] KORNAŚ J. 1968. Zespoly roślinne Gorców. 2. Zespoły synantropijne. Fragm. Flor. Geobot. 14(1): 83-124.
[9] KORNAS J. 1975. Rosliny naczyniowe Gorców. Uzupemienie III. Fragm. Flor. Geobot. 21(4): 467-490.
[10] Kornas J. 1987. Rosliny naczyniowe Gorców. Uzupetnienie IV. Zesz. Nauk. U.J., Prace Bot. 15: 27-44.
[11] KORNAŚ J. 1987. Zmiany roślinności segetalnej w Gorcach w ostatnich 35 latach. Zesz. Nauk. U.J., Prace Bot. 15: 7-26.
[12] Kornaś J., Dubiel e. 1990. Przemiany zbiorowisk łakowych w Ojcowskim Parku Narodowym w ostatnim trzydziestoleciu. Pradnik (w druku).
[13] KORNAŚ J., DUbiel E. 1991. Land use and vegetation changes in the hay-meadows in the Ojców National Park during the last thirty years. Veröff. Geobot. Inst. Rūbel (w druku).
[14] Kornas J., Medwecka-Kornas a. 1967. Zespoly roslinne Gorców. 1. Naturalne i na wpół naturalne zespoly nieleśne. Fragm. Flor. Geobot. 13(2): 167-316.
[15] Matuszkiewicz w. 1981. Przewodnik do oznaczania zbiorowisk roslinnych Polski. PWN, Warszawa.
[16] MEdWECKa-Kornas a. 1955. Zespoly leśne Gorców. Ochrona Przyr. 23: 1-111.
[17] MEDWECKA-KornaŚ A. 1989. Fir deterioration and floristic changes in the mixed forest of the Ojców National Park (Southern Poland). Stud. Plant. Ecol. 18: 177-179.
[18] Medwecka-Kornaś a. 1990. Fir deterioration and floristic changes in the mixed forest of the Ojców National Park (Southern Poland). Vegetatio 87: 175-186.
[19] Medwecka-Kornaś a., Kornaś J. 1963. Mapa zbiorowisk roslinnych Ojcowskiego Parku Narodowego. Ochrona Przyr. 29: 17-87.
[20] MEDWECKA-Kornas a., KORNAŚ J. 1968. Zbiorowiska roslinne dolin Jaszcze i Jamne. Stud. Nat. Ser. A 2: 49-91.
[21] MICHALIK S. 1967. Mapa zbiorowisk roślinnych rezerwatu „Turbacz" im. Wladysława Orkana w Gorcach. Ochrona Przyr. 32: 89-131.
[22] PIOTROWSKA H. 1986. Gefährdungssituation der Pflanzengesellschaften der planaren und kollinen Stufe Polens (erste Fassung). Schriftenteihe f. Vegetationskunde 18: 19-27.
[23] SZafer W. (red.). 1959. Szata roslinna Polski. I,II, PWN, Warszawa.
[24] SZAFER W. (red.). 1966. The Vegetation of Poland. Pergamon Press, Oxford etc., - PWN, Warszawa.
[25] SZAFER W., ZARZYCKI K. (red.). 1972. Szata roslinna Polski. Wyd. 2. I,II. PWN, Warszawa.

[^0]: ${ }^{1}$ Referat wygłoszony na 48 Zjeździe Polskiego Towarzystwa Botanicznego w Katowicach, w dniu 6 września 1989 r.

[^1]: ${ }^{2}$ Postępowanie takie, stosowane przez Dyrekcję OPN, ma na celu powstrzymanie sukcesji w kierunku zarosli i lasu i utrzymanie w ten sposób otwartych przestrzeni trawiastych na dnach dolin w Parku

