WPŁYW OGNIA NA ROŚLINNOŚĆ SAWANNY AFRYKAŃSKIEJ

Fire impact on the vegetation of the African savanna

Anna Medwecka-Kornaś

Summary. The author had an opportunity to study the pyrophytic vegetation in Zambia, in 1972/73, and in northern Nigeria, in 1977/78. Special attention was paid to the life forms of particular species and to the phytosociological and phenological features of two plots in the open savanna near Lusaka. The studied pyrophytes represented four groups of the Raunkiaer’s classification: phanerophytes, hemicryptophytes, geophytes (mainly with shallowly located underground organs) and therophytes. A part of herbaceous plants had woody underground organs typical of „geoxylic suffrutesces”. On the savanna plots near Lusaka hemicryptophytes prevailed. The following phenological phases were distinguished there: the first phase of early regeneration after inflagration, the second phase of domination of tall grasses in the rainy season and the third phase of the yellowing of the grasses in the dry season.

Key words: grassy savanna, Zambia, pyrophytes, Raunkiaer’s classification, phenology

Prof. dr Anna Medwecka-Kornaś, Instytut Botaniki, Uniwersytet Jagielloński, ul. Lubicka 46, 31–512 Kraków
WSTĘP

W czasie pobytu w Afryce w latach 1972/73 (Lusaka, Zambia) i 1977/78 (Maiduguri, północna Nigeria) autorka prowadziła obserwacje dotyczące piórztwa (różność zdolnych do przetrwania pożarów). Część zebranych materiałów była już przedmiotem publikacji [1, 2], część opracowywana jest obecnie. Pióryty przyciągały od dawna uwagę badaczy, tak ze względu na cechy ekologiczne i przebieg ich ewolucji, jak ze względów praktycznych. Na wielu terenach ogień stanowił i stanowi do dziś ważne narzędzie w gospodarce pastersko-rolniczej. Dzięki jego oddziaływaniu utrzymuje się większość trawiazych sawann w Obszarze Sudańsko-Zambiejskim Afryki. Sawanny te określone są nawet jako „klimaks ogniowy” (fire-climax).

ZAKRES I CEL BADAŃ

Badania własne, przeprowadzone w Afryce, obejmowały:

1. Zdjęcia fitosociologiczne powtarzane kilkadziesiąt razy w ciągu roku na dwóch wypalonych poletkach, położonych w obrębie trawiastej sawanny blisko Lusaki, w Zambii.

2. Obserwacje poszczególnych gatunków na poletkach i poza nimi, dotyczące morfologii roślin (m.in. części podziemnych) i umieszczenia pączków odnawiających.

Głównymi celami badań dotyczących piórytów było wyróżnienie ich typów ekologicznych w oparciu o koncepcję Raunkiæera (1905), sporządzenie spektrum form życiowych dla badanej sawanny i przesłedzenie faz fenologicznych w jej rozwoju po pożarze.

KLASYFIKACJA EKOLOGICZNA PIORYTÓW IICH PRZYKŁADY

Pióryty reprezentować mogą wszystkie typy biologiczne (formy życiowe) wyróżniane w kla-
syfikacji Raunkiæera. Ich przystosowania do przetrwania pożarów są na ogół – przynajmniej w warunkach afrykańskich – równocześnie przystosowaniami do przetrwania suszy.

Fanozofity – piórytyczne drzewa i krzewy – mają z reguły odporną na ogień korę, a niekiedy i liście (np. niewielkie drzewka z rodzaju Uapaca (Uapaca-ceae) w suchym lesie typu miombo). Po pożarze mogą go przetrwać fanozofity rozwijają nowe pędy i liście, lub w pierwszej kolejności kwiaty, jak np. Erythrina abyssinica DC. (Leguminosae).

Chamezofity – nie były stwierdzone na poletkach koło Lusaki i nie są podawane np. z sawanny nigeryjskiej przez Hopkinsa (1965), rosną jednak w niektórych innych podlegających pożarom formacjach, np. w zaroślach „fynbos” w klimacie typu śródziemnomorskiego w południowej Afryce.

Hemikryptozofity – tracą w czasie pożaru części nadziemne. Pączki odnawiające, utworzone na powierzchni lub tuż przy powierzchni ziemi, chronione są przed ogieniem przez niespalone dołne części łodygi i liści (np. w wielu trawach, ewentualnie ściółkę i cząstki gleby. Jest to możliwe, gdyż ogień na sawannach przechodzi zwykle szybko i na wysokości 2–3 cm nad ziemią. Błonowych części podziemnych jest u hemikryptozofitów rozmaita. Często są one silnie rozłożone i gromadzą znaczne ilości substancji odżywczych i wody. Mogą też być zdrowe i reprezentować wtedy równocześnie wyróżnioną na tej podstawie grupę roślin geofitycznych (geoxylic suffrutes – White 1976).

Przykładem typowych hemikryptozofitów może być trawa Hyparrhenia filipendula (Hochst.) Staff o kepiastym układzie liści odziomkowych (typ caespitex basiphyle Descoings 1975), różne gatunki rodzaju Cyperus np. C. tenax Böck. z bardzo wyraźną tuniką liści [2], Dichelitëa mel-leri Rolfe (Acanthaceae) i Justicia elegantula S. Moore (Acanthaceae) o zgrubieniu przy ziemi, z którego wyrastają liczne pędy nadziemne i korzenia. Vigna nata N. E. Br. (Leguminosae) o wyraźnym korzeniu głównym, przeważnie palowym, i Triumfetta heliocarpa K. Schum. (Tiliaceae) o korzeniu zgrubiałym flaszkowato.

Teroity – rośliny jednoroczne, które przeżywają pożar tylko w postaci nasię, były na badanym poletku nieliczne. W innych regionach i formacjach pirofitów, np. w śródziemnomorskim „garrigue”, mogą one odgrywać znacznie większą rolę.

Geoxyllic suffrutices czyli rośliny zielne (względnie na wprost zielne) ze zdrewniałymi częściami podziemnymi, z których wyrastają po pożarze pędy nadziemne, są grupą, której odróżnienie nakłada się na klasyfikację Raunkiara i nie zawsze jest jednoznaczne. Zależnie od umieszczania pączków odnawiających mogą być one chamesfitami, hemikryptotfitami względnie geofitami. Do roślin tej grupy z pączkami odnawiającymi na powierzchni ziemi należą np.: malenki Hibiscus rhodanthus Gürke apud Schinz (Malvaceae) i Gardenia subacaulis Stapf & Hutch. (Rubiaceae – [1]), mające organy podziemne słabo zgrubiałe, Lanna edulis (Sond.) Engl. (Anacardiaceae), Combretum platypetalum Welw. ex Laws. (Combretaceae) i Cryptosepalum maraviense Oliv. (Leguminosae) o bardziej rozbudowanych częściach podziemnych. U Cryptosepalum mają one postać podziemnego pnia, na którego rozgałęzieniach wyrastają pędy nadziemne (Ryc. 1).

Klasyfikacja Raunkiara była już niejednokrotnie stosowana w odniesieniu do pirofitów, choć sprawia to niejakie trudności i nie wszystkie ich cechy mogą być tą drogą odzwierciedlone. Możliwość przeżywania pożarów wiąże się także np. z odpornością owoców i nasion na spalenie, sposobem kiełkowania nasion, szybkością wzrostu młodych roślin i z rytmiką rozwojową poszczególnych gatunków.

UDZIAŁ TYPÓW BIOLOGICZNYCH ROŚLIN NA POLETKACH OBSERWACYJNYCH W SAWANNIE KOŁO LUSAKI

Poletka położone koło Lusaki w Zambii, na których prowadzono szczegółowe obserwacje pirofitów, znajdowały się na wysokości 1130 m n.p.m. i były prawdopodobnie corocznie wypalane. Obejmowały otwartą, trawiastą sawannę z nielicznymi drzewami i krzewami. Wśród traw do najważniejszych gatunków należały Andropogon schirensis A. Rich, Hyperrhelia dissoluta (Stud.) Clayton, Hyparrhenia filipendula (Hochst.) Stapf i Setaria sphacelata (Schumach.) Moss, wśród roślin dwuliściennych Annona stenophylla Engl. & Diels. (Annonaceae), Aspilia pluriseta Schweinf. (Compositae), Tapihydrum discolor Robyns (Rubiaceae), Lannea

Ryc. 1. Cryptosepalum maraviense.
edulis (Sond.) Engl. (Anacardiaceae), Tricho-
desma hockii De Wild (Boraginaceae) i Trium-
fetta heliocarpa K. Schum. (Tiliaceae).

Ogólna liczba gatunków na każdym z pole-
tek przekraczała 60. W ich skład wchodziło od-
powiednio po 5 i 8 gatunków drzew i krzewów, 12 i 13 gatunków traw. Wśród roślin zielnych przeważyły hemikryptofity (na każdym z pole-
tek ponad 30 gatunków). Rośliny wyraźnie geo-
syliczne miały po blisko 10 gatunków, geofity
uplasowały się na przedostatnim, a terofity na
ostatnim miejscu. Siewek, praktycznie biorąc,
nie oberwano.

FAZY FENOLOGICZNE WYPALANEJ SAWANNY

Jednym z podsumowań obserwacji na poletkach
pod Lusaką może być wyróżnienie trzech głów-
nych faz fenologicznych w rozwoju roślinności.
Są to:

1. Wczesne stadium rozwoju trwające 1–2
miesiące po pożarze. Przypadało na drugą połowę
okresu suszy, na sierpniu i wrześniu. Naga gleba,
miestami pokryta popiołem, była widoczna
środek niskich traw, częściowo spalonych
ale szybko wypuszczających nowe liście. Około
półowa gatunków nie będących trawami kwitła;
kwiaty rozwijały się przed liśćmi lub równo-
cześnie z nimi. Niektóre rośliny miały już za-
wiązujące się lub nawet dojrzałe owoce, ale naj-
większe nasilenie owocowania przypadało nieco
później, tuż przed deszczami lub na początku
deszczy, w październiku i listopadzie.

2. Stadium pełnego rozwoju traw, w środki
sezonu deszczowego, w styczniu i w lutym. Gle-
ba w tym okresie była całkowicie pokryta przez
geść roślinność, dominowały kwitnące i owocu-
jące trawy. Wiele roślin dwuliściennych, bardzo
niskich w czasie kwitnienia, miało teraz w pełni
rozwinęte organy asymlujące i znaczne roz-
miary (np. liście u Lannea edulis dochodziły do
długości 40 cm).

3. Stadium stopniowego wysychania roślin-
ności po okresie deszczów, od kwietnia do na-
stępnego pożaru (tj. do lipca lub sierpnia). Na
początku tego okresu trawy złośliwy stały się 6
trawie, większość innych roślin straciła liście
lub łodygi. Tylko nieliczne rośliny pozostały
zielone i kwitły do następnego pożaru. Powierz-
chnia gleby była całkowicie zacieniona przez
gęste, obumarłe pędy traw.

Wiele faktów wskazuje, że na badanej sa-
wannie ogień hamuje sukcesję, a za potencjalną
roślność naturalną tego terenu można uznać
las sawannowy, zrzucający całkowicie lub czę-
ściowo liście w porze suchej.

LITERATURA

Stapf. & Hutch., a pyrophytic suffrutex of the African

stant sedges (Cyperaceae) in Zambia. Flora 176: 61–
71.

Instytucje współorganizujące badania:
University of Maiduguri, Maiduguri, Nigeria;
University of Zambia, Lusaka, Zambia;
Uniwersytet Jagielloński, Kraków