The role of central Italy as a centre of refuge for thermophilous plants in the late Cenozoic

EDOARDO MARTINETTO

Dipartimento di Scienze della Terra, S, via Accademia delle Scienze, I-10123 Torino, Italy, e-mail: martinetto@dst.unito.it

Received 5 May 2001; accepted for publication 11 September 2001

ABSTRACT. Several fruit and seed assemblages have been gathered from the Pliocene and Early Pleistocene deposits of central Italy. Ongoing research on this material has led to the identification of relevant thermophilous taxa, also known in the Neogene of central Europe, but mostly in older sediments. This emphasizes the role of central Italy as a centre of refuge for thermophilous plants, in particular during the phases of climatic deterioration of the Middle and Late Pliocene. The group of species which persisted until the Middle Pliocene in the study area includes: Tetraclinis salicornioides, Cryptomeria rhenana, Trigonobalanopsis exacantha, Itea europaea, Litsea? sonntagii, Magnolia allasoniae, M. ludwigii, Cyclea palatinati-bavariae, Ficus potentilloides, Cephalanthus pusillus, Toddalia latisiliquata (possibly passing into the Late Pliocene), T. naviculaeformis, T. rhenana, Zanthoxylum ailanthiforme, Meliosma canavesana, M. wetteraviensis, Sabia europaea, Sapindoidea margaritifera, Eurya stigmosa and Sparganium nanum. A few thermophilous species persisted into the Late Pliocene (Sequoia abietina, Sinomenium cantalense and Symplocos lignitarum) while Liriodendron gerninata was probably still extant into the Early Pleistocene (only pollen records), as Liquidambar cf. europaea and Leitneria venosa undoubtedly were.

KEY WORDS: fossils, fruit and seed, floristic refuge, Pliocene, Early Pleistocene, central Italy

INTRODUCTION

In central Italy several late Cenozoic continental basins are present, and their alluvial, fluvial or lacustrine deposits often contain different kinds of terrestrial plant remains, including fruits and seeds, which have been poorly studied until now. Since the late 1980s, the present author has been visiting several outcrops and collecting a few sediment samples containing fossil fruits and seeds ("carpoids") from selected layers, mostly in the Upper Valdarno and Tiberino basins (Fig. 1). The same type of research has been extended to two well-dated marine successions, which are rich in terrestrial plant remains: Marecchia and San Miniato. These samples have been processed and analysed according to the standard method employed by the author (Martinetto 1995, Basilici et al. 1997) and most of them gave positive results, so that a few dozen carpological species have been identified in each fossil site (only 4 species in San Miniato). These floras are still mainly unpublished, so it seems pertinent to give here a short report on some important occurrences of plant mega/mesofossil taxa, with particular emphasis on those exotic elements which seem to have extended their stratigraphic range further than was formerly believed.

These data are particularly meaningful because the stratigraphic and geochronological assessment of central Italian continental successions has seen considerable advances in the last decade: many sections provided mammal assemblages (Gliozzi et al. 1997) and good magnetostratigraphic records, as well as long pollen sequences which highlight the patterns of vegetation change in the late Cenozoic, in particular during the onset of glacial/interglacial cycles in the Late Pliocene (Abbazzi et al. 1997, Bertini & Roiron 1997, Pontini & Bertini 2000).
One of the successions which has been more actively investigated in the last decade is the "first lacustrine phase" (Albianelli et al. 1995) of the Upper Valdarno Basin (Toscana), assigned to the Middle Pliocene. The whole succession is nearly 250 m thick and is divided into three formations: Spedalino Sands and Gravels, Meleto Clays and San Donato Sands (Torre et al. 1996). In particular the Meleto Clays contain well-preserved leaf assemblages which had already attracted the attention of several authors of the 19th century (Gaudin & Strozzi 1859, Ristori 1886, review in Mori Secci 1992).

More recently, Gregor (1990) published a list of carpological species (additional unpublished material is stored at the Naturmuseum of Augsburg, Germany) and Mai (1994) investigated the cones of a few pinaceous species, mainly originating from a 10 m thick sandy succession at the transition between the Meleto Clays and the overlying San Donato Sands, cropping out in the vicinity of a country house named La Tassinaia. Several samples from this outcrop, indicated as Gregor's section in this work, have been prepared by the present author, and the resulting collection of identified fruits and seeds has been deposited at the Earth Sciences Dept. of Torino.

The present author also collected a few fruits and seeds in the lower part of the Meleto Clays, at an outcrop close to the hamlet of Le Matole. Furthermore, Bertini and Roiron (1997) provided information on the leaf assemblages of the Meleto Clays.

All these 20th century records are referred to the succession which had been exposed until the late 1990s in the Santa Barbara brown coal open-cast mine (Fig. 1: 2). In addition, a diversified macroflora (leaves, fruits and seeds) from an outcrop of the same formation in the vicinity of the village of Meleto has been described by Fischer and Butzmann (in press).

Albianelli et al. (1995, 1997) and Torre et al. (1996) demonstrated, on the basis of magnetic stratigraphy and mammal biochronology, that the Meleto Clays were deposited within the Gauss normal magnetochron (Middle Pliocene), and that the transition to the Matuyama reversed magnetochron (Late Pliocene) falls within the San Donato Sands.

The "second lacustrine phase" of the Upper Valdarno basin has been investigated near the village of Matassino, at the Poggiorosso site (SO.LA.VA. Quarry, Fig. 1: 3), where some fluvial-alluvial layers yielded very rich mammal assemblages (Mazzini et al. 2000). Here, interesting plant macroremains were collected from two sandy beds, which provide a detailed record not only of the local vegetation, but also of
the one growing on the slopes around the depositional basin. According to Mazzini et al. (2000) the age of the Poggiorosso succession is latest Pliocene, since the magnetostratigraphic analysis suggests it was formed during the Ol- duval subchron.

Further south, in between the Apennine ranges, another large depression filled up by Pliocene and Early Pleistocene continental deposits occurs: the Tiberino Basin of the Umbria region. In its southwestern branch, running from Perugia to Todi, Basilici (1997) distinguished a few formations deposited in lacustrine or fluvial-alluvial palaeoenvironments. Each formation includes layers with a more or less good record of plant remains, which have been sampled by the present author in selected sites:

1) the Fosso Bianco Formation provided meaningful remains in the Cava Toppetti I site near Todi (Fig. 1: 6) and especially in several layers of the muddy-sandy deposits embedding the Fossil Forest of Dunarobba I (Fig. 1: 8, uncertain age, but probably Middle or Late Pliocene: Ambrosetti et al. 1995b). Actually the richest carpoflora has been found in a section (Dunarobba II, B, Ambrosetti et al. 1995b) which is located 400 m to the NW of the Fossil Forest site, and which is thought to be stratigraphically higher, and therefore a bit younger, than the Fossil Forest. The fossil fruits and seeds of the Cava Toppetti I site have been extracted by sandy sediments rich in mummified plant remains, which are enclosed in a big sub-lacustrine landslide, located above the top of the 140 m thick muddy succession drawn by Basilici (1997), which spans the late Middle Pliocene and the early Late Pliocene (ca. 3 to 2.1 Ma: Abbazzi et al. 1997). Despite the precise calibration of the underlying succession, the age of the deposits enclosed in the landslide is problematic: it may be more or less synchronous to the upper part of the muddy succession (early Late Pliocene) or a bit older (i. e. Middle Pliocene);

2) the Ponte Naja Formation, in the Cava Toppetti II site (Fig. 1: 6) is a 150 m thick alluvial fan succession, which includes a planar-concave sandy-gravelly body (channel filling) with abundant mummified "carpoids" in its middle part. Taxonomic analysis of this flora has so far permitted the identification of 37 species of woody and herbaceous plants. The age of this succession has been determined as Late Pliocene using palaeomagnetic data, combined with the biochronologic interpretation of the mammal assemblages (Abbazzi et al. 1997);

3) four sites of the fluvial-alluvial Santa Maria di Ciciliano Formation provided carpological material, even if the floras contained fewer than 30 species. The most important floras are those of Torre di Picchio (Fig. 1: 9; Girotti et al. in press) and Villa San Faustino (Fig. 1: 10; Ambrosetti et al. 1995a); both sites provided important mammal assemblages, which made it possible to fix their age respectively to the latest Pliocene (C. Petronio pers. comm.) and to the Early Pleistocene. Useful information on fossil "carpoids" is available also for Monticello near Todi and Collevalenza (Fig. 1: 7). These sites are regarded by Basilici (1997) as Early Pleistocene, but there are no reliable dating elements to support this view.

Furthermore, in the same Umbria region, a few layers of the Pietrafitta site (Tavernelle basin, Fig. 1: 5) provided a diversified assemblage of freshwater macrophytes, associated with just a few remains coming from the terrestrial palaeoenvironment, so that the flora and vegetation of the dry land cannot be reconstructed on the basis of macroscopic remains alone. In the brown coal, which was being excavated at this site in the late 20th century (Lona & Bertoldi 1973), a variety of spectacular mammal remains has been recovered. The rich faunal assemblage suggests a latest Early Pleistocene age (Gliozzi et al. 1997).

Finally, the two marine deposits sampled for fossil "carpoids" are:

(I) a Middle Pliocene (ca. 3.0 to 2.9 Ma) portion of the well-calibrated Marecchia section (Fig. 1: 4; near Rimini, Adriatic coast), which according to Rio et al. (1997) covers a time interval from 3.1 to 2.2 Ma as a whole;

(II) another Middle Pliocene section in the vicinity of San Miniato (Fig. 1: 1; Lower Valdarno basin, Toscana), where four carpological species were found by S. Dominici in the residue of a bulk sample for mollusc analysis in a lagoonal layer (CSL1). The age of this section is based on the general sequence stratigraphic interpretation of the Lower Valdarno basin, where multiple data sets are available: index foraminifers, molluscs, continental mammals, magnetic stratigraphy (Benvenuti et al. 1995, Dominici 1994).
SYSTEMATIC PART

Some aspects of the fossil record of selected exotic species which have been detected in the studied floras are discussed below; in addition Table 1 shows the occurrences of further exotic elements. A complete overview of the floristic composition of the Pliocene/Early Pleistocene fruit and seed assemblages from central Italy is not yet available.

Gymnospermae

Cupressaceae

Tetraclinis salicornioides (Unger) Kvaček
Pl. 1 fig. 1, Pl. 2 figs 1a, b
1840 Hellia salicornioides Unger, p. 375.
1986 Tetraclinis salicornioides (Unger) Kvaček, p. 48, Pl. 1 fig. 11, Pl. 2 figs 2–14, Pl. 3 figs 3, 4.

The problematic nomenclature and taxonomy of Cenozoic leaf whorls and cones of Tetraclinis have been discussed by Mai (1997), who suggested using different specific names for these two types of remains, even when they are found in the same layer. Here, in agreement with former works on the Italian floras (Martinetto 1999) both cones and leaf whorls are designated with the single, widely used, binomial Tetraclinis salicornioides (Unger) Kvaček. A few remains of this species have been found in the “New Quarry” of Dunarobba II: 2 cones in one layer and 6 characteristic twig segments in another. In central Europe this species does not occur in Pliocene sites (Mai 1997), whereas it is rather common in the Early Pliocene of NW Italy (Martinetto 1999). The fossils of Dunarobba II prove that this species survived in central Italy at least until the Middle Pliocene, and its absence in the younger floras seems to indicate that later it either disappeared or became very rare.

Taxodiaceae

Cryptomeria rhenana Kilpper
Pl. 2 fig. 2
1968 Cryptomeria rhenana Kilpper, p. 104–106, Pl. 34 figs 23–30, Pl. 35 figs 1–8, Pl. 38 figs 3, 4; Figs 1–4.

In northern Italy this species occurs in several Early and Middle Pliocene sites (Martinetto 1999); in central Italy it is found in Santa Barbara (Gregor’s section), Dunarobba II and Cava Toppetti I. Here it is mostly documented by seeds, which are readily recognizable for the trapezoidal to sub-rhombic outline and peculiar cell pattern. The seeds are associated with Cryptomeria-type shoot fragments, while the cones are absent or badly preserved.

Sequoia abietina (Brongniart) Knobloch
Pl. 1 figs 2–4
1822 Phyllites abietina Brongniart, p. 362, Pl. 15 fig. 16.
1964 Sequoia abietina (Brongniart) Knobloch, p. 601.

The presence of Sequoia in the Pliocene of central Italy had been generally assumed on the basis of the abundance of Sequoia-type pollen in several sections. Paganelli (1995) even attempted the reconstruction of a Pliocene Sequoia forest and its ecological conditions. Surprisingly, records of Sequoia cones have been scarce until now; in the present work cones of Sequoia abietina were retrieved from the samples of Gregor’s section at Santa Barbara, and from both carpological assemblages of Cava Toppetti (I and II), where they are rather common. On the other hand, macrofossils of Sequoia are absent in Dunarobba (I and II), and this seems to be a good reason for rejecting the hypothesis that the large trunks forming the spectacular Fossil Forest might belong to Sequoia (Biondi & Brugiapaglia 1991, Paganelli 2000). They are more likely to represent remains of the Glyptostrobus europaeus plant, whose cones and shoots are very common in this site (Martinetto 1994, 2000). The source of the abundant Sequoia-type pollen found in the swamp sediments (Ambrosetti et al. 1995b) of the Fossil Forest might be both Cryptomeria and Sequoia plants growing in neighbouring, better-drained palaeoenvironments. Incidentally, Sequoia shoots have been collected in the sediments of the Fosso Bianco Formation not far from Dunarobba (Basilici 1997). In conclusion, Sequoia still ought to be an important tree in the Middle and Late Pliocene of central Italy, and some pollen diagrams suggest that it survived in southern Italy (Calabria) after the Pliocene/Pleistocene boundary (Combrouieu-Nebout 1993); unfortunately no macrofossil record is presently available to support this view.
Table 1. Occurrence of some exotic species in the Pliocene and Early Pleistocene sites of central Italy.

Age abbreviations: L – Late, Ist – latest, E – Early, M – Middle, Pl – Pliocene, Ple – Pleistocene

<table>
<thead>
<tr>
<th>Species</th>
<th>Site</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinidia favedata C. & E.M. Reid</td>
<td>Dunarobba II</td>
<td>M? Pli</td>
</tr>
<tr>
<td>Alangium sp.</td>
<td>Dunarobba II</td>
<td>M? Pli</td>
</tr>
<tr>
<td>Ampelopsis malvaformis (Schlotheim) Mai</td>
<td>Dunarobba II, Cava Toppetti I, Monticello</td>
<td>M? Pli (?E Ple)</td>
</tr>
<tr>
<td>Boehmeria sp.</td>
<td>Torre di Picchio</td>
<td>Ist Pli</td>
</tr>
<tr>
<td>Carya sp.</td>
<td>Santa Barbara</td>
<td>M Pli</td>
</tr>
<tr>
<td>Cathaya van-der-burghii Gassmann in Mai</td>
<td>Santa Barbara, Poggiorosso</td>
<td>M Pli-Ist Pli</td>
</tr>
<tr>
<td>Cephalanthus pusillus Friis</td>
<td>Dunarobba I-II</td>
<td>M? Pli</td>
</tr>
<tr>
<td>Cephalotaxus sp.</td>
<td>Santa Barbara, Cava Toppetti II, Poggiorosso</td>
<td>M Pli-Ist Pli</td>
</tr>
<tr>
<td>Craizia bronii (Unger) Kvaček, Bůžek & Manchester</td>
<td>Meleto</td>
<td>M Pli</td>
</tr>
<tr>
<td>Decodon spp.</td>
<td>Dunarobba II, Torre di Picchio, Pietrafitta</td>
<td>M Pli-E Ple</td>
</tr>
<tr>
<td>Cryptomeria rhenana Kilpper</td>
<td>Santa Barbara, Dunarobba II</td>
<td>M Pli</td>
</tr>
<tr>
<td>Cylea palatinati-bavariae Gregor</td>
<td>Santa Barbara, Dunarobba II</td>
<td>M Pli</td>
</tr>
<tr>
<td>Eurya stigmosa (Ludwig) Mai</td>
<td>Santa Barbara, Dunarobba II</td>
<td>M Pli</td>
</tr>
<tr>
<td>Fagopropsis sp.</td>
<td>Poggiorosso, Torre di Picchio</td>
<td>Ist Pli</td>
</tr>
<tr>
<td>Ficus potentilladis Mai</td>
<td>Dunarobba II, Cava Toppetti I</td>
<td>M? Pli</td>
</tr>
<tr>
<td>Glyptostrobus europaeus (Brongniart) Unger</td>
<td>Santa Barbara, Dunarobba I-II, Cava Toppetti I</td>
<td>M Pli</td>
</tr>
<tr>
<td>Halesia cf. crassa (C. & E.M. Reid) Kirchheimer</td>
<td>Poggiorosso</td>
<td>Ist Pli</td>
</tr>
<tr>
<td>Ilex cf. protogaea Mai</td>
<td>Torre di Picchio</td>
<td>Ist Pli</td>
</tr>
<tr>
<td>Itea europaea Mai</td>
<td>Dunarobba I</td>
<td>M? Pli</td>
</tr>
<tr>
<td>Juglans bergomensis (Balsamo-Crivelli) Massalongo</td>
<td>Santa Barbara, Poggiorosso, Torre di Picchio</td>
<td>M Pli-Ist Pli</td>
</tr>
<tr>
<td>Leptneria venosa (Ludwig) Dorofeev</td>
<td>Villa San Faustino</td>
<td>E Ple</td>
</tr>
<tr>
<td>Liquidambar cf. europaea A. Braun</td>
<td>Santa Barbara, Dunarobba II, Cava Toppetti I, Poggiorosso, Torre di Picchio, Pietrafitta</td>
<td>M Pli-E Ple</td>
</tr>
<tr>
<td>Lithiodendron genninata Kirchheimer</td>
<td>Dunarobba II, Poggiorosso, Torre di Picchio</td>
<td>M? Pli-Ist Pli</td>
</tr>
<tr>
<td>Litsea? sonnagii Gregor</td>
<td>Marechcia, San Miniati, Santa Barbara, Dunarobba I-II</td>
<td>M Pli</td>
</tr>
<tr>
<td>Lobelia plicenica (Dorofeev) Mai</td>
<td>Dunarobba II, Poggiorosso, Torre di Picchio</td>
<td>M Pli-Ist Pli</td>
</tr>
<tr>
<td>Magnolia cor Ludwig</td>
<td>Cava Toppetti II, Torre di Picchio</td>
<td>L Pli-Ist Pli</td>
</tr>
<tr>
<td>Magnolia allasoniae Martinetto</td>
<td>Santa Barbara, Dunarobba I-II</td>
<td>M Pli</td>
</tr>
<tr>
<td>Magnolia ludwigii Ettingshausen</td>
<td>Marechcia, Santa Barbara, Dunarobba II</td>
<td>M Pli</td>
</tr>
<tr>
<td>Mahonia staphyleiformis Mai & Walther</td>
<td>Cava Toppetti II</td>
<td>L Pli</td>
</tr>
<tr>
<td>Melissa elegans E.M. Reid</td>
<td>Torre di Picchio</td>
<td>Ist Pli</td>
</tr>
<tr>
<td>Melissia canavesana Martinetto</td>
<td>Santa Barbara, Dunarobba II</td>
<td>M Pli</td>
</tr>
<tr>
<td>Melissia wetteravnensis (Ludwig) Mai</td>
<td>Dunarobba I</td>
<td>M? Pli</td>
</tr>
<tr>
<td>Myrica sp.</td>
<td>San Miniato, Dunarobba II</td>
<td>M Pli</td>
</tr>
<tr>
<td>Nyssa disseminata (Ludwig) Kirchheimer</td>
<td>Santa Barbara</td>
<td>M Pli</td>
</tr>
<tr>
<td>Ocotea sp. A</td>
<td>Santa Barbara</td>
<td>M Pli</td>
</tr>
<tr>
<td>Paleocarya macroptera (Brongiart) J ännichen, Friedrich & Takač</td>
<td>Meleto</td>
<td>M Pli</td>
</tr>
<tr>
<td>Parrotia sp.</td>
<td>Poggiorosso</td>
<td>Ist Pli</td>
</tr>
<tr>
<td>Phellodendron cf. elegans (C. & E.M. Reid)</td>
<td>Cava Toppetti II</td>
<td>L Pli</td>
</tr>
<tr>
<td>Proserpinaca reticulata C. & E.M. Reid</td>
<td>Dunarobba II</td>
<td>M? Pli</td>
</tr>
<tr>
<td>Pseudouryale limburgensis (C. & E.M. Reid)</td>
<td>Villa San Faustino</td>
<td>E Ple</td>
</tr>
<tr>
<td>Pseudolarix schmidtgenii Kräusel</td>
<td>Santa Barbara, Meleto</td>
<td>M Pli</td>
</tr>
<tr>
<td>Pseudotsuga sp.</td>
<td>Cava Toppetti I</td>
<td>M? Pli</td>
</tr>
<tr>
<td>Pterocarya sp.</td>
<td>Marechcia, Santa Barbara, Dunarobba I-II, Poggiorosso, Torre di Picchio</td>
<td>M Pli-Ist Pli</td>
</tr>
</tbody>
</table>
Table 1. Continued.

<table>
<thead>
<tr>
<th>Species</th>
<th>Site</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rehderodendron ehrenbergii (Kirchheimer) Mai</td>
<td>Santa Barbara</td>
<td>M Pli</td>
</tr>
<tr>
<td>Sabia europaea Czeczott & Skirgiełło</td>
<td>Santa Barbara, Dunarobba II</td>
<td>M Pli</td>
</tr>
<tr>
<td>Sapindoidae margaritifera (Ludwig) Kirchheimer</td>
<td>San Miniato</td>
<td>M Pli</td>
</tr>
<tr>
<td>Sassafras ludigii Mai</td>
<td>Dunarobba II</td>
<td>M Pli</td>
</tr>
<tr>
<td>Sequoia abietina (Brongniart) Knobloch</td>
<td>Santa Barbara, Cava Toppetti I-II</td>
<td>M Pli-L Pli</td>
</tr>
<tr>
<td>Sinomenium cantalense (Reid) Dorofeev</td>
<td>Meleto, Dunarobba II, Cava Toppetti II</td>
<td>M Pli-L Pli</td>
</tr>
<tr>
<td>Sparganium nanum Dorofeev in Kolakovsky</td>
<td>Dunarobba II, Cava Toppetti I</td>
<td>M Pli</td>
</tr>
<tr>
<td>Spirella sp.</td>
<td>Dunarobba II-I</td>
<td>M Pli</td>
</tr>
<tr>
<td>Swida garbunovii (Dorofeev) Negru</td>
<td>Dunarobba II-I</td>
<td>M Pli</td>
</tr>
<tr>
<td>Symposios casparyi Ludwig</td>
<td>Marechina</td>
<td>M Pli</td>
</tr>
<tr>
<td>Symposios lignitarum (Queenstedt) Kirchheimer</td>
<td>Marechina, Dunarobba II, Cava Toppetti I-II</td>
<td>M Pli-L Pli</td>
</tr>
<tr>
<td>Taxodium dubium (Sternberg) Heer</td>
<td>Santa Barbara, Meleto</td>
<td>M Pli</td>
</tr>
<tr>
<td>Tetraclinis salicornioides (Unger) Kvaček</td>
<td>Dunarobba II</td>
<td>M Pli</td>
</tr>
<tr>
<td>Toddalia latissiliquata (Ludwig) Gregor</td>
<td>San Miniato, Dunarobba II, Cava Toppetti I-II</td>
<td>M Pli (L Pli?)</td>
</tr>
<tr>
<td>Toddalia naviculaeformis (Reid) Gregor</td>
<td>Marechina</td>
<td>M Pli</td>
</tr>
<tr>
<td>Toddalia rhenana Gregor</td>
<td>Marechina, Dunarobba II, Cava Toppetti I</td>
<td>M Pli</td>
</tr>
<tr>
<td>Trichosanthes fragilis E.M. Reid</td>
<td>Marechina</td>
<td>M Pli</td>
</tr>
<tr>
<td>Trigonobalanopsis exacantha (Mai) Kvaček & Walther</td>
<td>Santa Barbara</td>
<td>M Pli</td>
</tr>
<tr>
<td>Zelkova sp.</td>
<td>Torre di Picchio</td>
<td>lst Pli</td>
</tr>
</tbody>
</table>

Angiospermae – Dicotyledones

Fagaceae

Trigonobalanopsis exacantha
(Mai) Kvaček & Walther

Pl. 1 fig. 5

1970 Trigonobalanus exacantha Mai, p. 385, Pl. 1 figs 19–26, Pl. 2 figs 1–18, Pl. 3 figs 1, 15–19.
1988 Trigonobalanopsis exacantha (Mai) Kvaček & Walther, p. 404, Pl. 47 figs 1–14, Pl. 48 figs 1–3.

In central Italy the occurrence of the characteristic cupules of this species is restricted to the Middle Pliocene sediments of the Upper Valdarno basin (Gregor's outcrop of Santa Barbara and Meleto: Gregor 1990, Fischer & Butzmann 2000). In northern Italy this species is a constant component of the floras of the Ca' Viettone complex (Martinetto 1999), and is often so common as to suggest that it was an important element of the mixed evergreen and broadleaf forest which covered the margins of the Po Basin in the Early Pliocene. At the meantime it was certainly still growing on the Atlantic coast of Europe too (Zagwijn 1990).

Altingiaceae

Liquidambar cf. **europaea** A. Braun

Pl. 1 fig. 6

1847 Liquidambar europaea A. Braun in Unger, p. 120, Pl. 35 figs 1–5.
1959 Liquidambar magniloculata Czeczott & Skirgiełło, p. 93, Pl. 15 figs 1–4.

Fruiting heads of Liquidambar have been found at Santa Barbara, in the Fosso Bianco Formation of Dunarobba II and Cava Toppetti I (Middle or Late Pliocene), as well as in the Torre di Picchio and Poggiorosso sites (latest Pliocene). Other badly preserved, much compressed fruiting heads, collected in the latest Early Pleistocene of the Pietrafitta site, have been observed in the Boldrini private collection (Pietrafitta, Perugia). These last specimens originate from the muddy layers above the main brown coal seam, where Lona and Bertoldi (1973) detected rather high pollen percentages of Liquidambar. These records prove that Liquidambar persisted in the Italian Peninsula longer than in transalpine Europe, where it seems to have disappeared in the Late Pliocene (Mai 1997). However, the specimens from central Italy have not yet been
submitted to a careful comparative analysis in order to assess their specific status. The well-preserved specimens from Cava Toppetti and Poggiorosso seem to be identical to analogous remains, rather common in the Early Pliocene of NW Italy (Martinetto 1995, Basilici et al. 1997), which had been assigned to Liquidambar magniloculata Czeczott & Skirgiello. However, according to Mai (1997), the valid name of this species is L. europaea A. Braun.

Hydrangeaceae

Itea europaea Mai 1985

Itea europaea Mai, p. 84, Pl. 6 fig. 1.

A few seeds and one fruit of this species were found in two samples of muddy sediment from the Fossil Forest of Dunarobba. In northwestern Italy, this species occurs, always with a few seeds and/or fruits, in two sites of Early or Middle Pliocene age (Boschi and Pranzalito) and three ones of probable Middle Pliocene age (Martinetto 1999). These records suggest it was an accessory element of the mid-Pliocene swamp forest. Fossil pollen of Itea has been detected in a short section of the Sarzana Basin (north-western part of central Italy), tentatively assigned to the Miocene-Pliocene transition (Bertoldi et al. 1994). In this site carpalogical data are not yet available, but the high pollen percentages (12%) suggest that Itea was an important element in the local vegetation.

Mai (1985) showed that the nearest living relative of *Itea europaea* is the American species *I. virginica* L., which is the most cool-tolerant species (northern limit in Illinois) of this mainly tropical-subtropical genus. For this reason it is not surprising to find *I. europaea* in the Middle Pliocene of both northern and central Italy, and even of NW Europe (Belfeld: Mai 1985). Up to the present there is no evidence in favour of the longer persistence of this species in southern Europe.

Lauraceae

Litsea? sonntagii Gregor

Pl. 1 fig. 7

1980 Litsea sonntagii Gregor, p. 21, Pl. 4 figs 14–21.

The identification of lauraceous endocarps is often problematic, but in the floras of the Ca’Vieitton complex (Early Pliocene) of north-western Italy, a very characteristic type occurs, which probably represents a single species. In earlier works (Martinetto 1995, 1999) this species had erroneously been regarded as similar to Gironniera carinata Mai. Later it was recognized as a member of the Lauraceae, of which the most similar type described in the literature seemed to be *Litsea* sonntagii Gregor (Gregor 1980) of the Bavarian Miocene. Meller (Meller et al. 1999) already stated that the generic identification of “*Litsea*” sonntagii was questionable and I agree with her because I collected some endocarps with a very similar morphology from a living lauraceous plant in Sichuan (China), most probably belonging to the genus *Lindera*. Therefore it will be necessary to investigate further the generic assignment of this species by looking for exceptionally well-preserved specimens. The recent discovery of a few complete fruits of *Litsea*? sonntagii Gregor, still attached to the pedicels, in a new fossil site near Fossano (NW Italy) could help in the assessment of its correct generic placement.

Despite the uncertain generic status, the specific assignment of the Italian material is well-defined: some specimens have been sent to Dr. H.-J. Gregor, who compared them with the German material, thus confirming the identification as *Litsea* sonntagii. In central Italy Litsea? sonntagii is rather common in the deposits of Dunarobba (both the Fossil Forest and the “New Quarry”), it is rare at Marecchia and in Gregor’s section of Santa Barbara, and it occurs as a single endocarp in the San Miniato site (Lower Valdarno, Middle Pliocene).

Leitneriaceae

Leitneria venosa (Ludwig) Dorofeev

Pl. 1 figs 8, 9

1857 Lobelia venosa Ludwig, p. 97, Pl. 21 figs 6a-c.

A single, strongly compressed endocarp has been collected from the sediments of the Villa San Faustino site. This isolated specimen demonstrates that *Leitneria venosa* persisted in Italy until the Early Pleistocene. Actually its presence in the Pliocene was suggested by Gregor (1990), who listed a *Leitneria* sp. in the Early Pliocene San Gimigniano flora. In northern Italy several endocarps of *L. venosa* have
recently been found at the top of the Cervo River section (Martinetto 1998: ?Late Pliocene). In conclusion Leitneria is a rare element in the late Cenozoic floras of Italy, and its ecological and climatic significance cannot as yet be fully appreciated.

Magnoliaceae

Liriodendron geminata Kirchheimer

1957 Liriodendron geminata Kirchheimer, p. 532, Fig. 147.

The seeds of this species are rather common in the Early and Middle Pliocene of northern Italy (Martinetto 1999), whilst in central Italy they are rare: a few pairs of seeds have been found in the sites of Dunarobba II and Torre di Picchio. The Pliocene pollen record does not provide clear indications: Paganelli (2000) reports low percentages of a Araucaria-Liriodendron pollen type in the Fossil Forest of Dunarobba, while Pontini and Bertini (2000) did not find Liriodendron in their Late Pliocene pollen diagram. Lona & Bertoldi (1973) detected Liriodendron pollen in the “Tiberian phase” of Pietrafitta, assigned by them to the Late Pliocene, but now unanimously referred to the Late Early Pleistocene. In conclusion, Liriodendron probably survived until the Early Pleistocene. In central Italy its typical thick-walled seeds, with smooth external surface, are found in Marecchia, Santa Barbara (Gregor’s section) and Dunarobba II, therefore the stratigraphic range of this species has to be extended to the Middle Pliocene.

Menispermaceae

Cyclea palatinati-bavariae Gregor

1977 Cyclea palatinati-bavariae Gregor, p. 207, Pl. 18 figs 3-6; Fig. 3.

Two endocarp fragments, one from Gregor’s section of Santa Barbara and the second from a sandy layer of the “New Quarry” of Dunarobba II, indicate that this species survived in central Italy at least until the Middle Pliocene. It was formerly known to occur in the Miocene of southern Germany and in three Early Pliocene sites of NW Italy (Martinetto 2001).
seemed to cause its disappearance from northern Italy (Martinetto 1999).

Moraceae

Ficus potentilloides Mai

1964 *Ficus potentilloides* Mai, p. 23, Pl. 2 fig. 17; Fig. 3.

The tiny seeds show a variable and scarcely diagnostic shape, however they agree perfectly with the type material (observed at the Natural History Museum of Humboldt University in Berlin in 1993) of the species described by Mai (1964). Their moraceous character is confirmed by the characteristic cell pattern (Pl. 2 fig. 8b). The material presently known in central Italy consists of several seeds from the “New Quarry” of Dunarobba II and a few ones from the Cava Toppetti I site. This species was formerly known in a few localities of central European Miocene and of the north Italian Lower to Middle Pliocene (Martinetto & Mai 1996, Martinetto 1999).

Naucleaceae (Rubiaceae)

Cephalanthus pusillus Friis

1985 *Cephalanthus pusillus* Friis, p. 69, Pl. 21 figs 1–7.

Mai (2000) proposed to use the name *Cephalanthus pusillus* Friis (= C. dorofeevi Arbuszova & Zhilin) as a valid synonym for C. kireevskianus Dorofeev (published without description). The type specimens described by Friis (1985) had been differentiated on the basis of the comparatively small size, although they bear essentially the same characters as the bulk of the Cenozoic specimens of *Cephalanthus* L. found in Europe and Siberia (Dorofeev 1963, Mai 2000). In this broader sense the species includes Eocene to Late Miocene records from central and eastern Europe and Early-Middle Pliocene records from northern Italy (Mai 1995a, Martinetto 1995, Cavallo & Martinetto 1996). In central Italy several fruits of this species (including tiny specimens identical to the Danish type material) have been detected in the Dunarobba I and II sites.

Toddalia latisiliquata (Ludwig) Gregor

1860 *Cytisus latisiliquatus* Ludwig, p. 145, Pl. 58 fig. 17.

1978 *Toddalia latisiliquata* (Ludwig) Gregor, p. 25, Pl. 2 figs 3–5, Pl. 3 figs 1–6, Pl. 4 figs 1–6, Pl. 5 fig. 1; Fig. 1d.

A species characterized by its mid-sized (5–6 mm), thick-walled, bean-like seeds of rather variable shape. A few specimens occurring at San Miniato, Dunarobba II and Cava Toppetti I prove that *Toddalia latisiliquata* persisted until the Middle Pliocene in central Italy, thus post-dating its extinction time in northern Italy (Early-Middle Pliocene: Martinetto 1999) and central Europe (Late Miocene: Gregor 1979). Moreover, the presence of two seeds of this species in the Cava Toppetti II flora would suggest that it was still present in central Italy during the Late Pliocene, yet it would be better to wait for confirmation, as it is not possible to exclude that these specimens might have been reworked from older sediments.

Toddalia naviculaeformis (Reid) Gregor

1920 Leguminosae g. (?), Reid, p. 69, Pl. 3 fig. 29 a-b.

1923 *Martyia naviculaeformis* Reid, p. 327, Fig. 5 a.

1975 *Toddalia naviculaeformis* (Reid) Gregor, p. 132, Pl. 7 figs 4, 5.

This species with large seeds (7–9 mm long) occurs only in the Marecchia site where six specimens were found. The occurrences in transalpine Europe, reported by Gregor (1978), include several sites of Miocene age (also Pont-de-Gail, the type locality of this species, is Upper Miocene after Gibert et al. 1977). However, this species had already been found in a Middle Pliocene site of NW Italy (Martinetto & Mai 1996), so that the record from Marecchia does not post-date its hypothetical extinction time from Europe, i. e. the Middle-Late Pliocene transition.

Toddalia rhenana Gregor

1979 *Toddalia rhenana* Gregor, p. 325, 327, Figs 38, 39.

The seeds of this species are definitely smaller (length 3–4 mm) than those of *Toddalia latisiliquata*. In central Europe *T. rhenana* is found in the late Middle to Late Pliocene and Early Pleistocene (Reid 1920, 1923). It seems to be present in northern Italy too (Martinetto & Mai 1996) and in central Europe (Gregor 1979), so that it is not possible to exclude that these specimens might have been reworked from older sediments.
is distributed in the Miocene and Early Pliocene (Gregor 1979), whereas in northern Italy it is rather common in the Early and Middle Pliocene. In central Italy it has been found at Marecchia, Dunarobba II and Cava Toppetti I, so it does not seem to have survived beyond the Middle-Late Pliocene boundary.

Zanthoxylum ailanthiforme

(Gregor) Gregor

Pl. 1 figs 18–21

1975 *Rutaspermum ailanthiforme* Gregor, p. 122, Pl. 6, fig. 5; Fig. 38.

Seeds of *Zanthoxylum* have been found at the following sites: Marecchia (11 specimens), Cava Toppetti I (7) and Dunarobba II (2). At first glance the seed populations from central Italy seemed to belong to *Z. ailanthiforme* (Gregor) Gregor. This species has been reported in the Early Pliocene of northern Italy, and in particular at the Ca’ Viettone site (Bertoldi & Martinetto 1995), where a goodly number of specimens (ca. 30) occur. Remarkably, comparison of this material with the collections from central Italy showed that the two populations are readily distinguishable, even if individual specimens may be completely identical. The prevailing form in the population from northern Italy is characterized by its sub-circular outline and markedly curved hilum which always extends over the full width of the seed. The sculpture is coarse, with irregular tubercles and pustules. In the populations from central Italy, the prevailing form tends to be broader (mean dimensions: 4.3 × 3.2 mm), semicircular or boat-like in outline, with a quasi-straight hilum extending over 3/4 of the seed width. The sculpture is quite variable, but often finer than in the north Italian specimens, and sometimes with short transverse ridges which traverse the slight depression below the hilar scar.

Probably the two populations should be assigned to separate taxonomic entities, but it is difficult to regard them as two species, since individual specimens of the two populations may be identical. However, the forms from central Italy agree quite well with the type specimens of *Z. ailanthiforme* (Gregor 1978), and are therefore assigned to this species, even though they are slightly larger (4.3 × 3.2 mm vs 3.5 × 2.6 mm). Taxonomic and nomenclatural assessment of the north Italian population will be the subject of future work.

Sabiaceae

Meliosma canavesana Martinetto

Pl. 1 figs 22, 23a, b

2001 *Meliosma canavesana* Martinetto 2001, p. 157, Pl. 3 figs 6–10, Pl. 4 fig. 4.

This recently described species (Martinetto 2001) occurs as two endocarps in Santa Barbara (Gregor’s outcrop) and half an endocarp in a sandy layer of the “New Quarry” of Dunarobba II. This means that it survived in central Italy at least until the Middle Pliocene. The nearest living relatives are some tropical-subtropical species of SE Asia belonging to the subgen. *Meliosma*.

Meliosma wetteraviensis (Ludwig) Mai

1857 *Hamamelis wetteraviensis* Ludwig, p. 105, Pl. 20 figs 27a, b.

The present author recently supported the view that only one fossil species of *Meliosma* subgen. *Kingsboroughia* is present in the late Cenozoic of Italy: *Meliosma wetteraviensis* (Martinetto 2001). This species occurs in the Dunarobba Fossil Forest represented by three small endocarps ("M. pliocaenica" morphotype, a specimen was illustrated by Martinetto 1994) and a single, larger one (5.5 × 5 mm). In NW Italy *M. wetteraviensis* is particularly common in the floras of the Stura complex (Middle Pliocene), being a probable member of the extensive *Glyptostrobus europaeus* swamp forest, an ancient plant community which has been well-recorded in the Dunarobba succession too (Martinetto 1994, 2000).

Sabia europaea Czeczott & Skirgiello

Pl. 1 figs 24, 25

1959 *Sabia europaea* Czeczott & Skirgiello, p. 122, Pl. 20 figs 9–12.

Two fragmentary, but readily recognizable endocarps of this species were found respectively in Gregor’s outcrop of Santa Barbara and in a sandy layer of the “New Quarry” of Dunarobba II. *S. europaea* is very rare in Italy,
with single specimens only having been found in a few Early and Middle Pliocene floras of NW Italy (Martinetto 1998).

Sapindaceae?

Sapindoidea margaritifera (Ludwig) Kirchheimer

Pl. 1 figs 26a, b

1860 Taxus margaritifera Ludwig, p. 73, Pl. 60 fig. 19.
1936a *Sapindoidea margaritifera* (Ludwig) Kirchheimer, p. 89, Pl. 9 fig. 1a-f.
1991 Koelreuteria margaritifera (Ludwig) Mai in Mai & Walther, p. 108, Pl. 13 fig. 17 [not accepted].

This species in northern Italy seems to be a rather constant and index taxon in the floras of the Ca’ Viettone complex (Early Pliocene); its presence in the Middle Pliocene has not yet been proven. In central Italy, two specimens of *S. margaritifera* have been collected by Dr. S. Dominici in the San Miniato section, assigned to the Middle Pliocene (see above). Furthermore, Gregor (1990) reported *Sapindoidea globosa* from the Early Pliocene section of San Gimigniano. This latter species has not been confirmed for Italy by research over the last decade, making it necessary to check if Gregor’s material too can be assigned to *S. margaritifera*.

Symplocaceae

Symplocos lignitarum (Quenstedt) Kirchheimer

Pl. 1 figs 27–29

1867 Carpolithus lignitarum Quenstedt, p. 914, Pl. 86 figs 35, 41.
1949 *Symplocos lignitarum* (Quenstedt) Kirchheimer, p. 14, Pl. 1 fig. 4, Pl. 2 fig. 15.

It has been proved recently that, towards the end of the Pliocene, the genus Symplocos still survived in northern Italy, but it was represented there by a member of Symplocos sect. Palura, a deciduous group of frost-tolerant plants (Cavallo & Martinetto in press). On the other hand, *S. lignitarum* may be referred to the broad thermophilous group of Symplocos, represented by evergreen shrubs and small trees. Its occurrence at Cava Toppetti II indicates that at least one of the species which characterize the warmest Neogene floras of Europe ("younger Mastixioidean") survived the Middle to Late Pliocene extinction phase (Martinetto 1999). This occurrence may be very important for reconstructing the ecological conditions of Mediterranean refuges in the Late Pliocene. This species has also been found at Marecchia, Dunarobba II and Cava Toppetti I.

Theaceae

Eurya stigmosa (Ludwig) Mai

Pl. 2 fig. 10

1860 Potamogeton stigmosus Ludwig, p. 60, Pl. 8 fig. 13.
1960 *Eurya stigmosa* (Ludwig) Mai, p. 79, Pl. 4 figs 8–17; Fig. 4.

A species which in central Europe is particularly common in the Miocene, and appears to have its last record in the Early Pliocene (Van der Burgh 1983). It is also very common in the Early Pliocene of northern Italy, where it is probably still present in the Middle Pliocene (Martinetto 1999). In central Italy Gregor (1990) reported seeds of *Eurya* sp. (probably *E. stigmosa*) from San Gimigniano (Early Pliocene), and a few seeds of *E. stigmosa* have been found at Santa Barbara (Gregor’s outcrop) and Dunarobba II. Therefore this species does not seem to cross the Middle/Late Pliocene boundary; however, in eastern Europe it is reported from the Chori site (Georgia), whose age is close to the Pliocene/Pleistocene boundary (Mai 1997).
Vitaceae

Ampelopsis malvaeformis (Schlotheim)

Mai in Mai & Gregor
Pl. 2 fig. 11

1822 Carpolithus malvaeformis Schlotheim, p. 98, Pl. 21 figs 9a-c.
1982 Ampelopsis malvaeformis (Schlotheim) Mai in Mai & Gregor, p. 418, Pl. 21 figs 1-3.

A few seeds occur in Dunarobba and Cava Toppetti I, and a single specimen in Monticello.

In northern Italy this species is rather common in the Early and Middle Pliocene, but seems to disappear at the Middle/Late Pliocene boundary. The discovery at Monticello suggests that in central Italy Ampelopsis malvaeformis would still have been present in the Early Pleistocene, but such a hypothesis needs urgent confirmation, due to the absence of reliable dating elements for this site (Basilici 1997).

CONCLUSION

At first glance, from a palaeobotanical point of view, it is difficult to accept that so many elements, which in central Europe are reputed to characterize the Miocene or Early Pliocene floras, can be found in the Middle and even Late Pliocene in southern Europe. The temptation to propose an older age for the flora-bearing sites is very strong (Gregor 1990, Günther & Gregor 1989, Fischer & Butzmann 2000). However, the non-palaeobotanical dating elements are in general so convincing that they can hardly be questioned on the basis of the scattered and incompletely studied palaeobotanical data which are available at present. Only an extensive survey of the late Cenozoic floras of central Italy would justify a reassessment of the present chronostratigraphic interpretations. The single site at which current palaeobotanical data would seem to be crucial for defining the geochronologic position is Dunarobba. In this succession there are no reliable dating elements, and a Late Pliocene age, mainly suggested by continental snails (Ambrosetti et al. 1995b), seems to be in contrast with the high percentage of exotic and “subtropical” elements in the fossil flora which is comparable to that of the Santa Barbara site in the Upper Valdarno, reliably dated to the Middle Pliocene.

If we accept the chronostratigraphic assessment suggested by non-palaeobotanical dating elements for the remaining sites, the new palaeofloristic data reported above allow us to draw several conclusions about plant biogeography and biostratigraphy in central Italy, by comparison with the rich record available for central Europe:

1) Central Italy obviously belonged to the Western European floristic region in the Middle and Late Pliocene, since most of the species in the floras of Santa Barbara, Cava Toppetti I and II and Dunarobba are also present in the coeval, or slightly older, floras of central Europe; the same seems to be true for the Poggiorosso and Torre di Picchio floras (latest Pliocene). On the other hand, in the few floras of the Early Pleistocene (Villa San Fantino, Monticello), several herbaceous taxa appear, which are uncommon or absent in central Europe (cf. Helianthemum, Ajuga, Eleocharis, Potentilla micrantha, Verbena officinalis), thus suggesting that the flora was becoming different from the transapenine and transalpine ones. However, it is important to emphasize that those taxa which are now characteristic of the Mediterranean floristic
region are totally absent in all the Pliocene and Early Pleistocene macrofloras from central Italy. This is in agreement with the minor role played by Mediterranean plants in the pollen records from the Upper Valdarno (Bertini & Roiron 1997, Torre et al. 1996) and Tiberino Basins (Abbazzi et al. 1997, Follieri 1977, Pontini & Bertini 2000).

Despite the marked floristic affinity to central Europe and northern Italy, the stages of floristic change in central Italy seem to be well-differentiated. This is particularly clear of floristic change in central Italy. This is in agreement with the minor role played by Mediterranean plants in the pollen records from the Upper Valdarno (Bertini & Roiron 1997, Torre et al. 1996) and Tiberino Basins (Abbazzi et al. 1997, Follieri 1977, Pontini & Bertini 2000).

3) From the foregoing points it follows that the use of carpological species for biostratigraphical interpretations based on central-European records is unsafe at present. However, it will certainly constitute an useful and precise tool for continental biostratigraphy. As soon as the carpological assemblages have been calibrated on a local scale, fitting the pattern of climate change which had been active in central Italy, the same problem occurs with pollen assemblages which show repeated phases of expansion and retreat of "mega-mesothermic" elements in the Middle and Late Pliocene (Albianelli et al. 1995, Bertini & Roiron 1997, Pontini & Bertini 2000, Torre et al. 1996), thus hampering an age estimation based on floral composition (as proposed, for example, by Bertoldi et al. 1994). At present, the best way to exploit the biostratigraphic potential of plant remains in central Italy would seem to be a combined analysis of paly-nological and carpological data; this approach may permit, even in short sections, detection of the key features of a given vegetational phase.

ACKNOWLEDGEMENT

I am especially thankful to Dr. Hans-Joachim Gergor (Naturmuseum Augsburg, Germany) for permitting me to cite many data concerning the floras of Marecchia and Santa Barbara, which were discovered and first studied by him. He also gave a strong support to my studies and solved relevant taxonomic problems: actually several determinations reported in the present paper were proposed by him. Furthermore I wish to thank Dr. Adele Bertini (University of Florence, Italy) and Dr. Maria Rita Pontini (University of Perugia, Italy) for helpful discussions and useful suggestions which have improved the text. I also thank Prof. Giorgio Basilici (University of Campinas, Brasil), Dr. Vittorio Borselli (University of Florence, Italy), Dr. Sergio Gentili (University of Perugia, Italy), Prof. Odoardo Girotti ("La Sapienza" University of Rome, Italy), Dr. Maurizio Magi (University of Florence, Italy) and Dr. Menotti Mazzini (University of Florence, Italy) for providing useful stratigraphic information and valuable help during field work.

REFERENCES

BASILICI G., MARTINETTO E., PAVIA G. & VIOL-

312
BIONDI E. & BRUGIAPAGLIA E. 1991
BERTINI A. & ROIRON P. 1997. Evolution de la végé-

DOROFEEV P. I. 1960. Oligotsenovoy flore Dunajev-

BRONGNIART A. 1822. Description des végétaux

CAVALLO P. & MARTINETTO E. (in press). Flore car-

CAVALLO O. & MARTINETTO E. 1996. Flore plio-

CZECZOTT, H. & SKIRGIELŁO A. 1959. The fossil

DOMINICI S. & ROCCHI R. 1995. In-
DOMINICI S. & ROOK L. 1995. In-quadramento stratigrafico-deposizionale delle faune a mammiferi villafranchiane (Unità Faun-

ETTINGSHAUSEN C., von. 1868. Die fossile Flora
der älteren Braunkohlenformation der Wetterau.

Flora von Meletto (Valdarno, Italien). Paläobo-
tanik, Paläoökologie und Paläoklima. In: Gregor
H.-J. (ed.), Flora Tertiaaria Mediterranea 5.6. Ver-
lag Documenta Naturae, München.

FOLLIERI M. 1977. Evidence on the Plio-Pleistocene
palaeoﬂoristic evolution in Central Italy. Riv. Ital.

GREGOR H.-J. 1979. Systematics, biostratigraphy
and paleoecology of the genus Toddaia Jussieu
(Rutaceae) in the European Tertiary. Rev. Palaeo-

DOROFEEV P.I. 1960. Ob oligotsenovoy flore Dunajev-
skoe lara na r. Tym v Zapadny Sobirii (On the
Oligocene flora Dunajevski Jar on the river Tym,

DOROFEEV P.I. 1963. Tretichnye flory Zapadny Sibi-
rii (The Tertiary ﬂoras of Western Siberia). Akad.

ETTINGSHAUSEN C., von. 1868. Die fossile Flora
der älteren Braunkohlenformation der Wetterau.

DOROFEEV P.I. 1963. Tretichnye flory Zapadny Sibi-
rii (The Tertiary ﬂoras of Western Siberia). Akad.

DOROFEEV P.I. 1963. Tretichnye flory Zapadny Sibi-
rii (The Tertiary ﬂoras of Western Siberia). Akad.

et al. In: Carraro F. (ed.), Revisione del Villafran-
chiano nell’area-tipo di Villafranca d’Asti. Il Qua-
terario, 9(1): 73–79.
MAZZINI M., BORSELLI V., CIOPPI E. & NAPOLE-
one G. 2000. Poggiorosso: un importante arric-
chimento delle faune villafranchiane a vertebrati
del Valdarno Superiore, di età prossima al limite
381–388.
Lower Miocene leaf, palynomorph, and diaspore
assemblages from the base of the lignite-bearing
sequence in the opencast mine Oberdorf, N Volts-
berg (Styria, Austria) as an indication of “Younger
Mastixioid” vegetation. Palaeontographica, B,
252: 123–179.
MORI SECCI M. 1992. Palynologic investigations on
Pliocene lacustrine sediments in the “Castenuovo
del Sabbioni” basin (upper Valdarno, central
PAGANELLI A. 1995. Esempio di studio paleoecologi-
co in un ambiente “villafranchiano” a Dunarobba
PAGANELLI A. 2000. Primi risultati di una ricerca
palinologica sulla Foresta Fossile di Dunarobba
Avigliano Umbro (ed.). La Foresta Fossile di Du-
arobba, Atti del Convegno Internazionale.
Eidiart, Todi.
PONTINI M.R. & BERTINI A. 2000. Late Pliocene
vegetation and climate in central Italy: high-res-
solution pollen analysis from the Fosso Bianco suc-
QUENSTEDT F.R. 1867. Handbuch der Petrefakten-
kunde. 2 Aufl. H. Laupp, Tübingen.
REID E.M. 1920. Recherches sur quelques graines
pliocénes du Pont-de-Gail (Cantal). Bull. Soc.
REID E.M. 1923. Nouvelles recherches sur les graines
du Pliocène inférieur du Pont-de-Gail (Cantal).
RIO D., CHANNEL J.E.T., BERTOLDI R., POLI M.S.,
VERGERIO P.P., RAFFI I., SPROVIERI R.
& THUNNEL R.C. 1997. Pliocene sapropels in the
northern Adriatic area: chronology and paleoenvi-
ronmental significance. Palaeoecogr., Palaeodi-
RISTORI G. 1886. Contributi alla flora fossile del Val-
143–190.
SCHLOTHEIM E.F. von, 1822–1823. Nachträge zur
TORRE D., ALBIANELLI A., BERTINI A., FICCA-
Paleomagnetic calibration of Plio-Pleistocene
mammal localities in central Italy. Acta Zool. Cra-
VAN DER BURGH J. 1978. The Pliocene Flora of For-
tuna-Garsdorf I. Fruits and seeds of Angios-
VAN DER BURGH J. 1983. Allochthonous seed and
fruit floras from the Pliocene of the Lower Rhine
UNGER F. 1840. Ueber die Pflanzen- und Insekten-
Geol., : 374–377.
UNGER F. 1841–1847. Chloris protogaea. W. Engel-
mann, Leipzig.
UNGER F. 1861. Sylloge plantarum fossilium I. -
ZAGWJN W.H. 1990. Subtropical relicts in the Plio-
cene flora of Brunssum (The Netherlands). Geol.
PLATES
Plate 1

Tetradinisc salicornioides (Unger) Kvaček

1. Cone, Dunarobba II, Middle? Pliocene
 Sequoia abietina (Brongniart) Knobloch

2. Cone, Cava Toppetti II, Late Pliocene

3, 4. Seeds, Cava Toppetti II, Late Pliocene
 Trigonobalanopsis exacantha (Mai) Kvaček & Walther

5. Cupule, Gregor’s section of Santa Barbara, Middle Pliocene
 Liquidambar cf. europaea A. Braun

6. Fruiting head, Torre di Picchio, latest Pliocene
 Litslea? sonntagii Gregor

7. Endocarp, Gregor’s section of Santa Barbara, Middle Pliocene
 Leithneria venosa (Ludwig) Dorofeev

8, 9. Endocarp from both sides, Villa San Faustino, Early Pleistocene
 Magnolia ludwigii Ettingshausen

9, 10. Seed, external view and split seed, internal view, Gregor’s section of Santa Barbara, Middle Pliocene
 Toddalia latissiliquata (Ludwig) Gregor

12a, b. Split seed, internal and external views, Cava Toppetti II, Late Pliocene

13. Seed with deep hilar scar, external view, San Miniato (CSL1 bed), Middle Pliocene
 Toddalia naviculaeformis (Reid) Gregor

14, 15. Seed, external view and broken seed, internal view, Marecchia, Middle Pliocene
 Toddalia rhenana Gregor

16, 17. Seeds, lateral and hilar views, Dunarobba II, Middle? Pliocene
 Zanthoxylum ailanthiforme (Gregor) Gregor

18. Seed, hilar view, Dunarobba II, Middle? Pliocene

19. Broken seed, internal view, Cava Toppetti I, Middle (or Late) Pliocene

20. Seed, lateral view, Cava Toppetti I, Middle (or Late) Pliocene

21. Seed, lateral view, Marecchia, Middle Pliocene
 Meliosma canavesana Martinetto

22. Endocarp, oblique lateral view, Gregor’s section of Santa Barbara, Middle Pliocene

23a, b. Split endocarp, internal and apical views, Gregor’s section of Santa Barbara, Middle Pliocene
 Sabia europaea Czeczott & Skirgielô

24. Fragmentary endocarp, lateral view, Dunarobba II, Middle? Pliocene

25. Fragmentary endocarp, lateral view, Gregor’s section of Santa Barbara, Middle Pliocene
 Sapindoidae margaritifera (Ludwig) Kirchheimer

26a, b. Seed (?), lateral-ventral and dorsal views, San Miniato (CSL1 bed), Middle Pliocene
 Symplocos lignitarum (Quenstedt) Kirchheimer

27. Endocarp, lateral view with three seed locules and basal pit, Cava Toppetti II, Late Pliocene

28, 29. Endocarps, oblique-lateral and lateral views, Cava Toppetti II, Late Pliocene
 Symplocos schereri Kirchheimer

30. Curved endocarp, lateral view, Gregor’s section of Santa Barbara, Middle Pliocene

Scale bar – 1 mm
E. Martinetto
Acta Palaeobot. 41(2)
Plate 2

Tetradinio salicornioides (Unger) Kvacék

1a, b. Leaf whorl and detail of stomata, Dunarobba II, Middle? Pliocene

Cryptomeria rhenana Kilpper

2. Seed, Cava Toppetti I, Middle (or Late) Pliocene

Liriodendron giganteum Kirchheimer

3. Pair of seeds, Torre di Picchio, latest Pliocene (or earliest Pleistocene)

Magnolia allasoniae Martinetto

4. Seed, internal view, Dunarobba II, Middle? Pliocene

Sinomenium cantalense (Reid) Dorofeev

5. Endocarp, front view, Dunarobba II, Middle? Pliocene

Clytea palatinati-bavariae Gregor

6. Fragment of endocarp, front view, Dunarobba II, Middle? Pliocene

7. Fragment of endocarp, side view, Dunarobba II, Middle? Pliocene

Ficus potentilloides Mai

8a, b. Seed, lateral view and detail of the surface structure, Dunarobba II, Middle? Pliocene

Cephalanthus pusillus Friis

9a, b. Fruit with dehiscence valve and detail of the surface structure. Dunarobba II, Middle? Pliocene

Eurya stigmosa (Ludwig) Mai

10. Seed with remains of the fruit tissue. Gregor's section of Santa Barbara, Middle Pliocene

Ampelopsis malviformis (Schlotheim) Mai in Mai & Gregor

11. Seed (pyrene), Dunarobba II, Middle? Pliocene

Sparganium nanum Dorofeev in Kolakovsky

12. Endocarp, lateral-apical view, Dunarobba II, Middle? Pliocene

13. Endocarp, lateral view, Dunarobba II, Middle? Pliocene

All SEM photos, figs 6 and 7 excepted; scale bar – 1 mm long where not specified
E. Martinetto
Acta Palaeobot. 41(2)